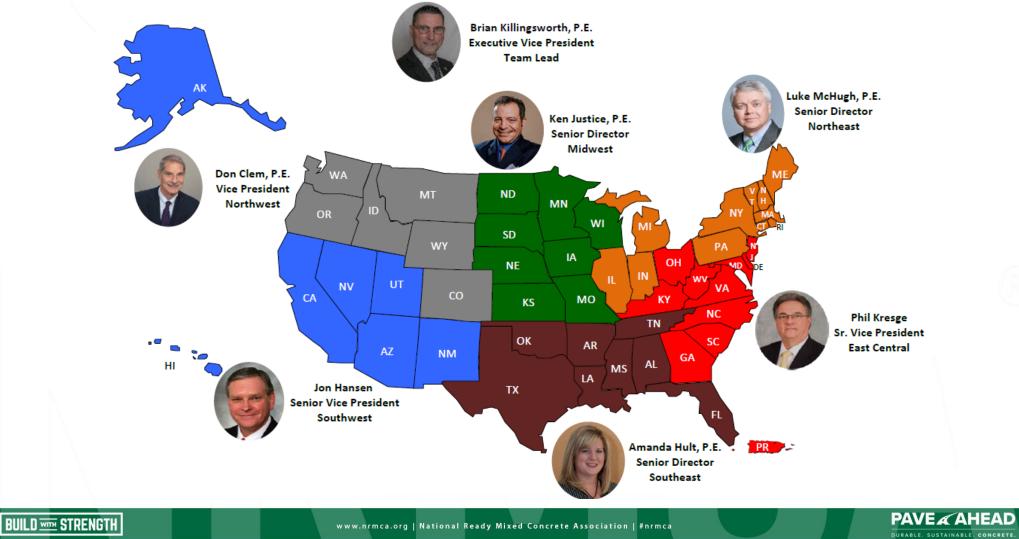


3 Part Series:

Part 1 - Concrete's Environmental Impacts and Ability to Impact a Company's Environmental Social and Governance Scores

Luke McHugh, P.E. Senior Director – Local Paving National Ready Mixed Concrete Association

March 9, 2021


BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

National Ready Mixed Concrete Association

- National Trade Association Established in 1930
- HQ in Alexandria, VA
- 1,400+ Member Companies
- NRMCA Represents ~75% of North American Ready Mixed Production
- Mission Serve Industry and Partners Through:
 - Compliance and Operations
 - Engineering
 - Government Affairs
 - Structures and Sustainability: Build With Strength[™] Initiative
 - Local Paving: Pave Ahead™ Initiative (PaveAhead.com)

NRMCA Local Paving Division: **Technical and Promotion Personnel - Regional Assignments**

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

LED	CFL	Incandescent
Avg Life: 25,000 Hrs	Avg Life: 8,000 Hrs	Avg Life: 1,200 Hrs
No Mercury	Mercury	No Mercury
6-8 Watts	13-15 Watts	60 Watts
Uses 84% less energy	Uses 75% less energy	90% energy lost to heat

Nick Holonyak, Jr. 1962

Edward Hammer 1976 Thomas Edison 1878

BUILD I STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

INCANDESCENT vs. LED

Good

BETTER

- ✓ Slightly higher initial cost
- ✓ Improved materials
- ✓ Increased lifespan
- ✓ Replace less frequently
- ✓ Less energy use
- ✓ Less wasted energy
- ✓ Better for environment

BUILD WITH STRENGTH

- ✓ Slightly higher initial cost
- ✓ Improved materials
- ✓ Increased lifespan
- ✓ Replace less frequently
- ✓ Less energy use
- ✓ Less wasted energy
- ✓ Better for environment

PAVEAAHEAD

URABLE. SUSTAINABLE. CONCRE

RESILIENT and SUSTAINABLE

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Resilient and Sustainable

CONCRETE PAVEMENTS

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

- Full-Depth Conventional Concrete
- Concrete Overlay of Existing Asphalt
- Roller-Compacted Concrete (RCC)
- Full Depth Reclamation (FDR) Using Cement Slurry

Concrete Overlays of Existing Asphalt

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Roller-Compacted Concrete Pavement

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

Full Depth Reclamation with Cement Slurry

Performance Benefits of a Concrete Pavement

- Proven long life
- No potholes, rutting, shoving
- Evenly carries heavy loads
- Resistance to freeze/thaw

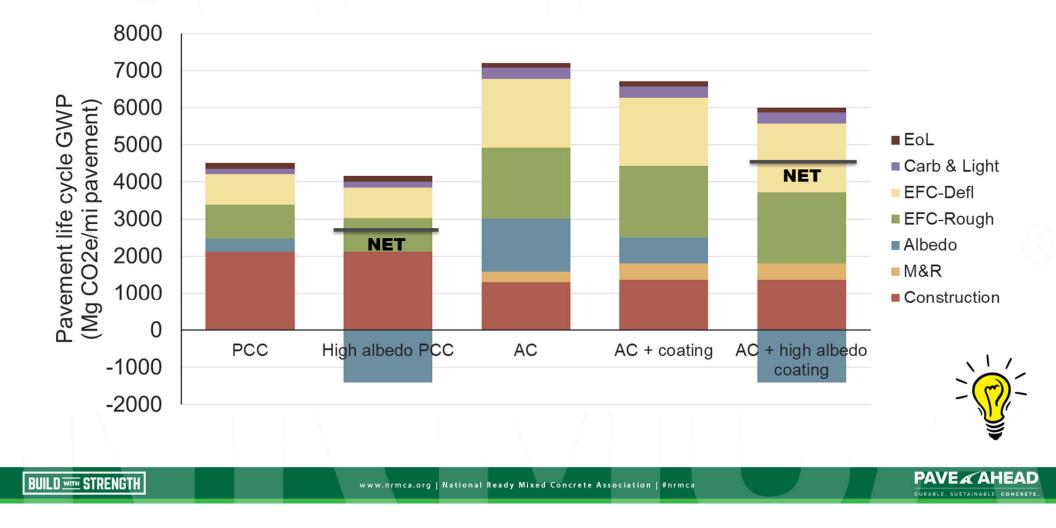
PAVEAAHEAD

DURABLE, SUSTAINABLE, CONCRETI

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

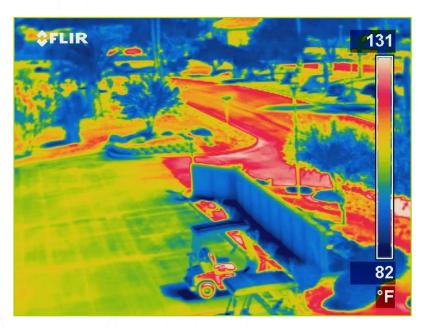
Environmental Benefits of a Concrete Pavement

- Uses less raw materials
- No hazardous materials
- Recycled materials can be used
- Conserves petroleum resources
- Does not pollute waterways


BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Heat Island Mitigation

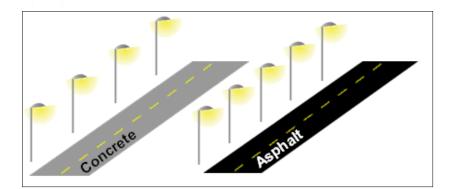

 Concrete's lighter color means Sketch of an Urban Heat-Island Profile less heat absorption ٥F ۰C Late Afternoon Temperature 9233 32 Lowers ambient air 31 • temperature by 7 to 10 30 85 degrees Rural Suburban Urban Commercial Residential Residential 1 degree equals 1.5% change • Suburban Park Downtown Rural in energy consumption Residential Farmland

Pavement Albedo

Concrete Pavements can Reduce Global Warming Potential by 50%

Photos courtesy of the American Concrete Pavement Association

BUILD WITH STRENGTH


www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Energy Savings and Illumination

Higher reflectivity reduces lighting requirements

Nearly 25% reduction in energy costs for lighting

Assumes: Initial cost = \$5,000/pole; Mainten ance cost = \$100/pole/year; Energy cost = \$0,0814/kwh; Operating time = 4,000 hours/pole/year

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

SUSTAINABILITY

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Pavement Sustainability - Definition

Refers to system characteristics that encompasses a pavement's ability to:

- 1. achieve the engineering goals for which it was constructed,
- 2. preserve and (ideally) restore surrounding ecosystems,
- 3. use financial, human, and environmental resources economically, and
- 4. meet basic human needs such as health, safety, equity, employment, comfort, and happiness.

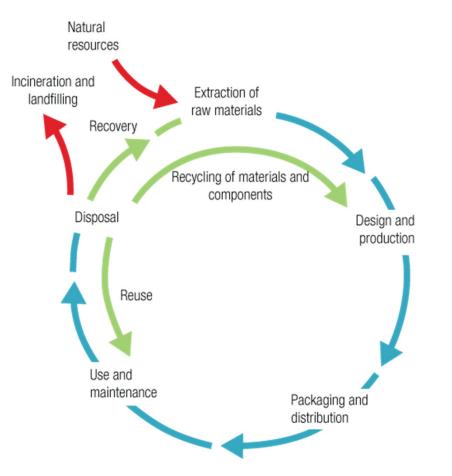
FHWA-HIF-15-002, Towards Sustainable Pavement Systems: A Reference Document, January 2015

Pavement Sustainability – Broad Impacts

- greenhouse gas (GHG) emissions
- energy consumption
- impacts on habitat
- water quality
- changes in the hydrologic cycle
- air quality

- mobility
- access
- freight
- community
- depletion of non-renewable resources
- economic development

FHWA-HIF-15-002, Towards Sustainable Pavement Systems: A Reference Document, January 2015


The basis of evaluating environmental impacts

LIFE CYCLE THINKING

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE AHEAD

BUILD with STRENGTH

- Life Cycle Thinking (LCT)
 - Reduce a product's resource use and emissions to the environment.
 - Improve its socio-economic performance through its life cycle.

Life Cycle Management (LCM)

Corporate Environmental and Social Responsibility

Business Case for Sustainability

Life Cycle Thinking

Systems and Procedures, such as:

- Communication
- Stakeholder Engagement / Product Panel
- Eco-labelling
- Certification
- Sustainable Procurement
- (Product-oriented) Environmental Management Systems
- Design for Sustainability
- Dematerialization
- Environmental Impact Assessment

Data, Information and Models, such as:

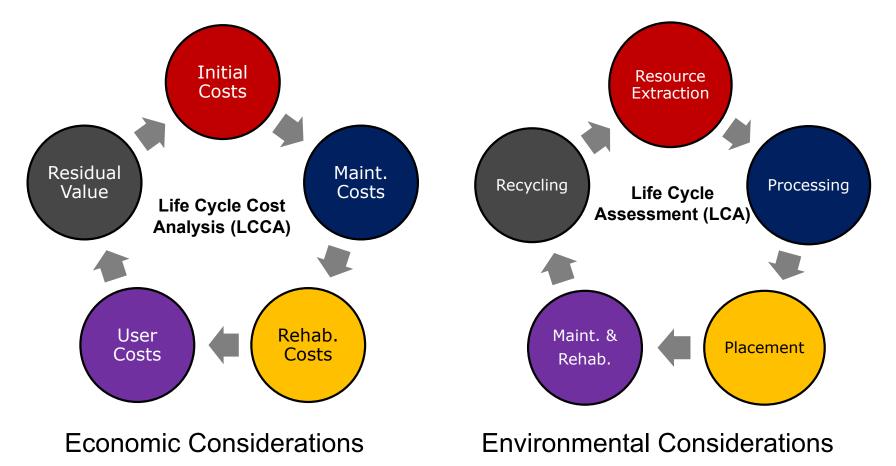
- Databases
- Best Practice, e.g.
 - » Benchmarks
 - » Standards
 - » Weighting Schemes
- Models, e.g.
 - » Dose-Response
 - » Fate and Exposure
 - » Scenario

Tools and techniques, such as:

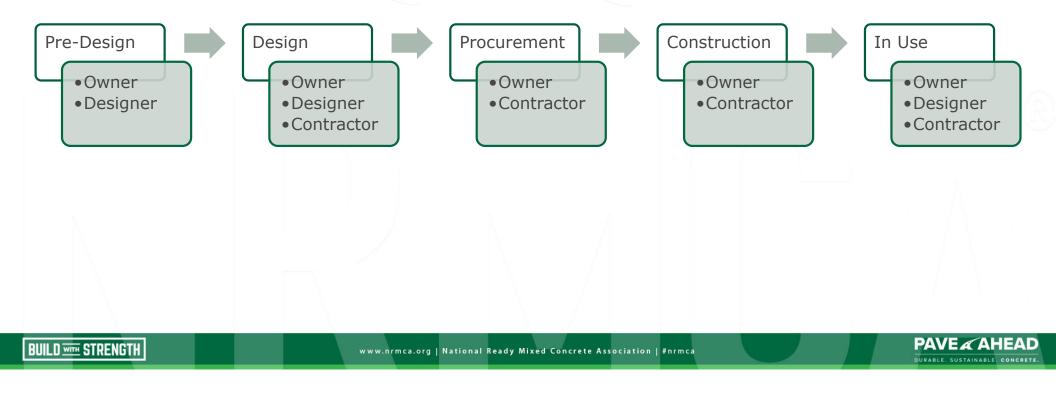
- Life Cycle Assessment
- Life Cycle Costing (LCC)
- Cost-benefit Analysis (CBA)
- Material and Substance Flow Analysis (MFA/SFA)
- Input-Output Analysis (IOA)
- Material Input per Unit of Service (MIPS)
- Cumulative Energy Requirements Analysis (CEPA)
- Cleaner Production Assessment (CPA)
- Risk Assessment (RA)
- Audits

Source: UNEP/SETAC. Life Cycle Management: A Business Guide to Sustainability. Paris, 2007.

Π


П

Q


YCLE

MANAGEMENT

Life Cycle Cost Analysis vs. Life Cycle Assessment

Life Cycle Thinking

SUSTAINABILITY: CORPORATE

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE & AHEAD DURABLE, SUSTAINABLE, CONCRETE.

Environmental Social

Environmental r

Environmental policy Environmental performance Climate change Nuclear energy Biodiversity

GOVERNANCE

Social

Human rights Labour standards Health and safety Employee development Supply chain standards

Governance

Corporate governance Code of ethics Bribery and corruption Death penalty Military expenses

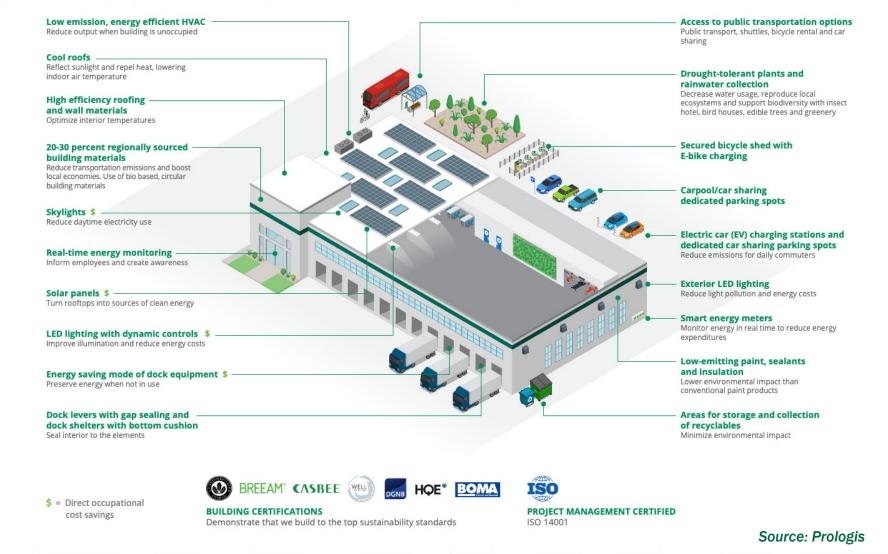
BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

ESG: Environmental Social Governance

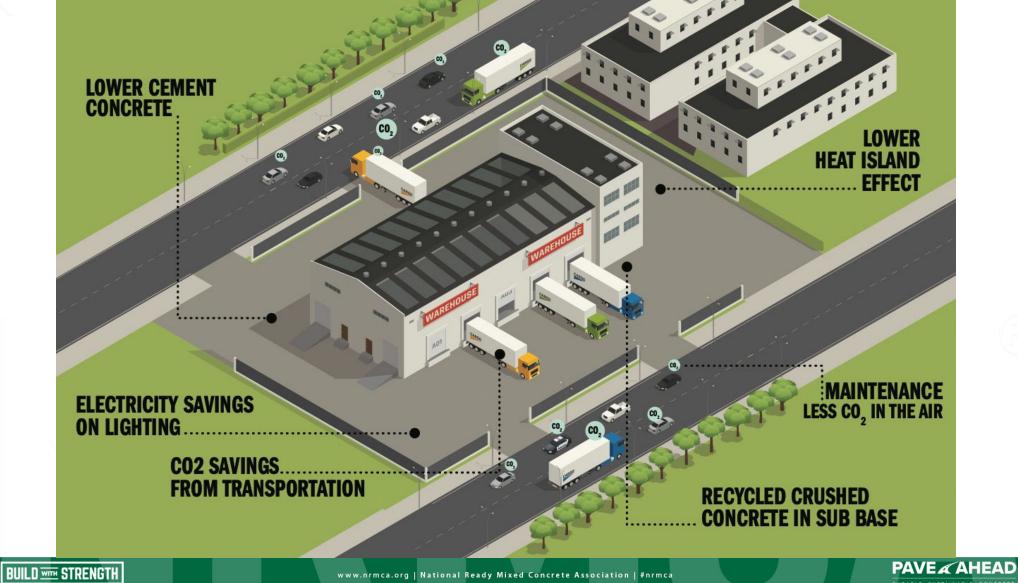
Scope 1 emissions are direct emissions from company-owned and controlled resources.

- Company facilities
- Company vehicles



Scope 2 emissions are indirect emissions from the generation of purchased energy, from a utility provider.

- Purchased electricity, steam, heating & cooling for personal use


Scope 3 emissions are all indirect emissions – not included in scope 2 – that occur in the value chain of the reporting company, including both upstream and downstream emissions.

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

DURABLE. SUSTAINABLE. CONCRETE.

SUSTAINABILITY: MATERIALS

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE & AHEAD DURABLE, SUSTAINABLE, CONCRETE.

BUILD WITH STRENGTH

1 ton CO₂ per 1 ton Portland cement

1 ton CO₂ per 1 ton Portland cement

 50 – 60% from calcination of calcium carbonate raw materials

BUILD WITH STRENGTH

PAVE 🖉 AHEAD

URABLE. SUSTAINABLE. CONCRE

1 ton CO₂ per 1 ton Portland cement

- 50 60% from calcination of calcium carbonate raw materials
- Carbonation of concrete accounts for 30 - 50% uptake of CO₂

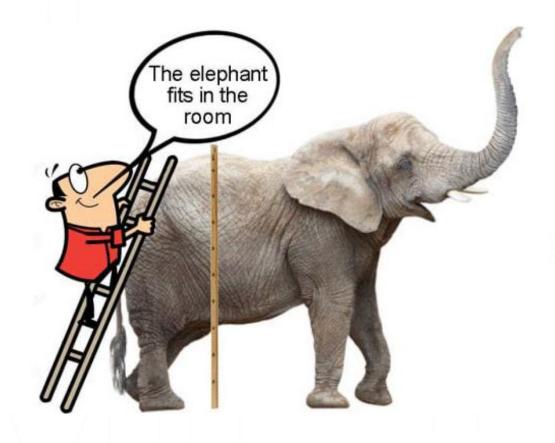
BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVEAAHEAD

URARLE SUSTAINARIE CONCR

 420 to 650 lbs. cementitious per yd³ concrete

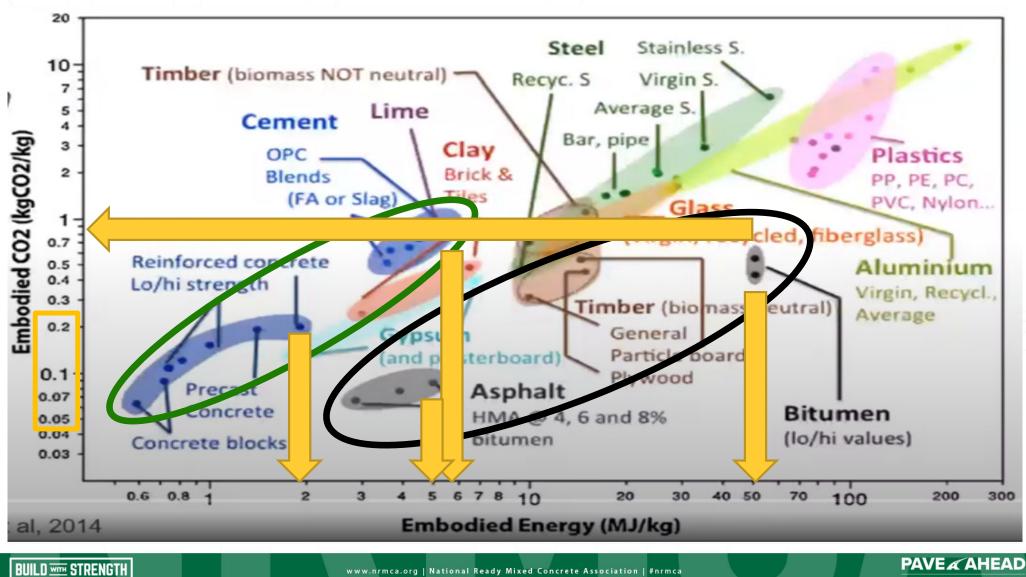

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

- 420 to 650 lbs. cementitious per yd³ concrete
- 15 to 30+%
 Supplementary
 Cementitious Material
 (SCM) replacement

- 420 to 650 lbs. cementitious per yd³ concrete
- 15 to 30+%
 Supplementary
 Cementitious Material
 (SCM) replacement
- Embodied CO₂ per yd³ equals 170 to 480 lbs.
 <15% of total weight

BUILD WITH STRENGTH

- 420 to 650 lbs. cementitious per yd³ concrete
- 15 to 30+%
 Supplementary
 Cementitious Material
 (SCM) replacement
- Embodied CO₂ per yd³ equals 170 to 479 lbs.
 <15% of total weight



Lowering Concrete's Carbon Footprint

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

DURABLE. SUSTAINABLE. CONCRETE.

Supplementary Cementitious Materials

Fly ash From coal-fired electrical power plants

Blast furnace slag From steel manufacturing

3/11/2021

Silica Fume

From silicone manufacturing

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVEAAHAD

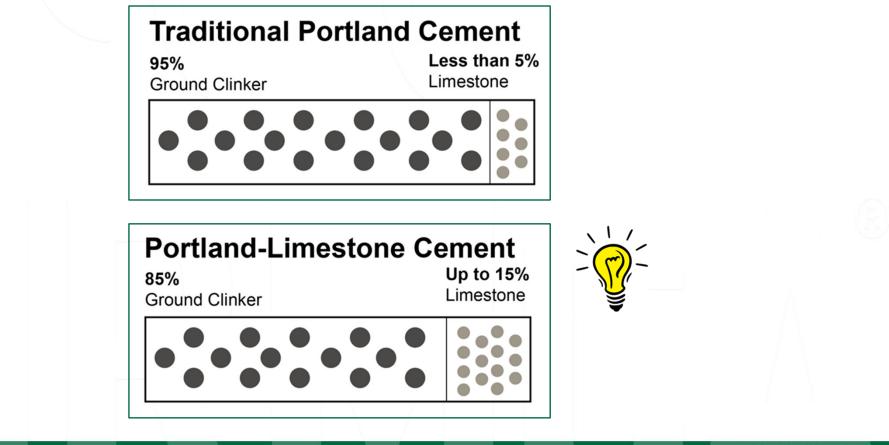
Cemen

- Alternative fuels
- Energy efficiency
- Clinker replacement
- Cement formulation
- Carbon sequestration at cement plant
- Carbon sequestration in cement production

oncrete

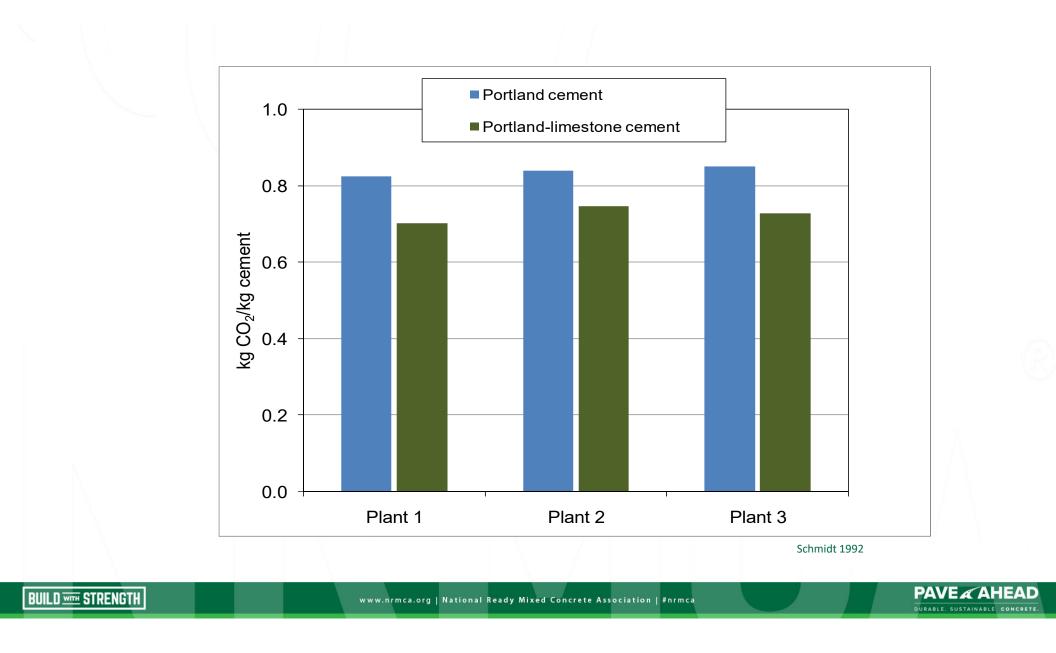
Cement replacement

- Carbon sequestration in concrete production
- Carbon sequestration in aggregate production



A greener cement option

PORTLAND-LIMESTONE CEMENT (PLC)

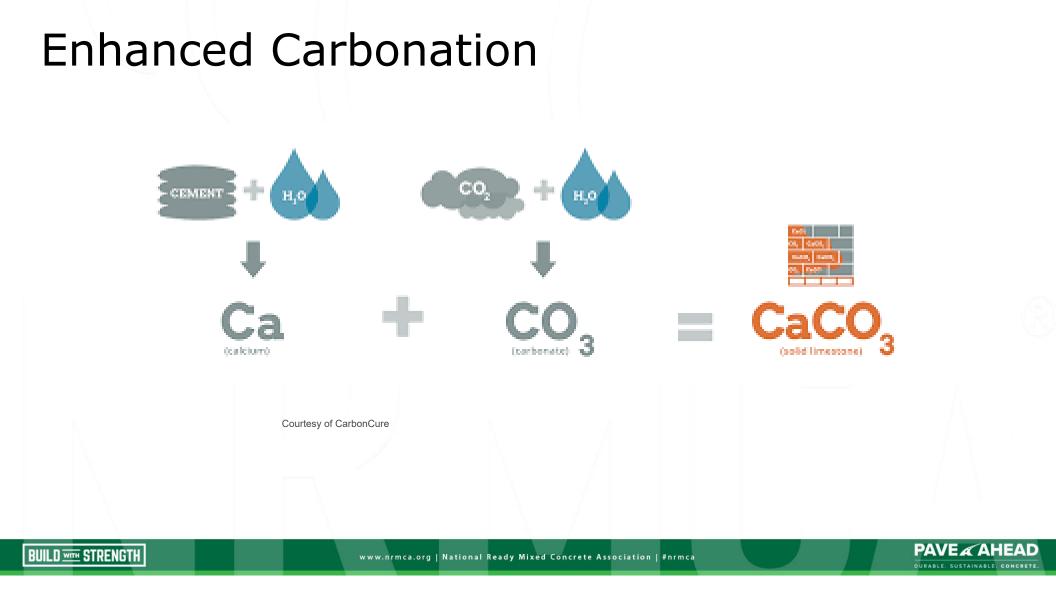

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

What is Portland-limestone cement?

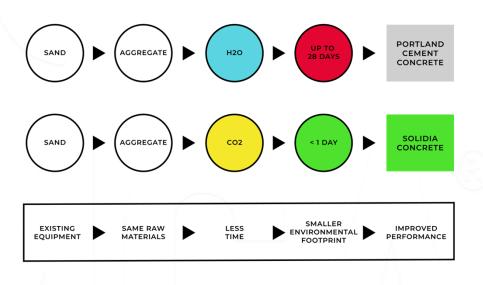
BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

History of PLC Acceptance/Use


BUILD WITH STRENGTH

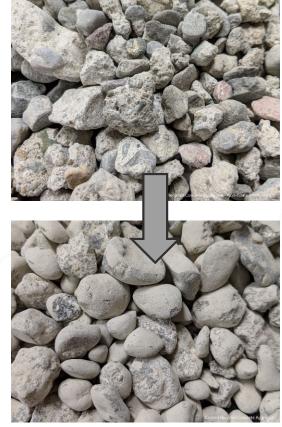
Note: FAA P-501, AIA Masterspec, and ACI and ICC building codes permit use of PLC


greenercement.org

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Enhanced Carbonation - Cement

- Specially formulated cement
- <u>Significantly reduces CO₂ emissions through</u> reduced production energy
- <u>Uses less limestone, fired at lower</u> <u>temperatures</u>
- Produces 30% less greenhouse gases
- Sequesters CO_2 equal to 5% of its weight
- Research shows concrete's carbon footprint is reduced by 70%.
- About the same cost as Portland cement
- Primarily in the precast concrete products industry


Courtesy Solidia Technologies™

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Enhanced Carbonation - Aggregate

- Combines industrial CO₂ emissions with metal oxides
- CO₂ sequestered construction aggregate (limestone)
- <u>44% by mass permanently sequestered CO₂</u>
- Substrate is small rock particles or recycled concrete
- <u>Carbon-negative concrete is achievable</u>
 - One cubic yard of concrete contains 3,000 pounds of aggregate
 - 44% comprised of sequestered CO₂, roughly 1,320 pounds
 - Offsets more than the amount of CO₂ produced by cement
 - Roughly 600 pounds per cubic yard


Courtesy of Blue Planet™

URABLE. SUSTAINABLE. CONCRET

BUILD WITH STRENGTH

Enhanced Carbonation - Concrete

Embodied Carbon

The emissions of carbon dioxide outside the operation or in-use phase of a building, including material extraction, transport, construction, renovation, and demolition/disassembly.

The emissions of carbon dioxide (CO_2) during the operation or in-use phase of the building.

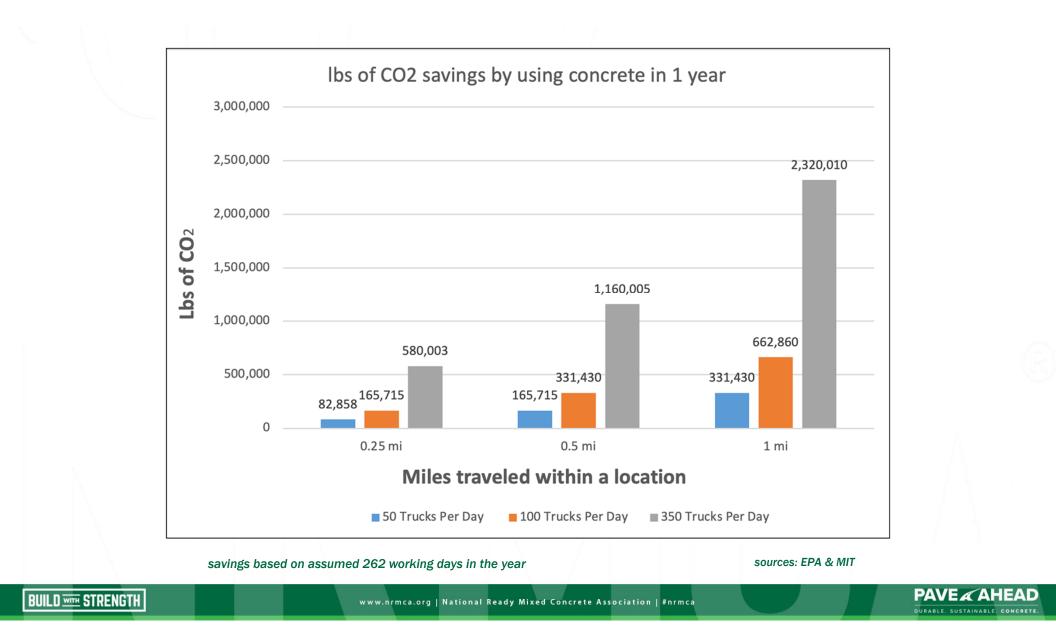
Additional CO² Savings

20-35 lbs CO² savings per yd³

ncrete Association | #nrmca

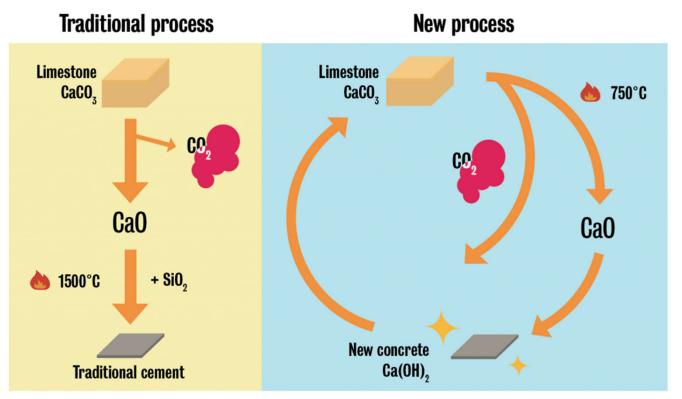
Saving on Carbon Emissions with Concrete

Assuming a 1:1 relationship between Cement and CO2 savings


- **1.** Use of SCMs (fly ash and slag)
- 2. CarbonCure
- 3. Admixtures
- 4. Portland Limestone Cement (PLC)
- **5.** Fuel Savings

up to 80% cement reduction up to 7% up to 8% additional 10% see next slide

DURABLE, SUSTAINABLE, CONCRET



www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Carbon Capture - CO₂NCRETE™

- UCLA
- Carbon Upcycling
- Produces
 CO₂ neutral
 cement

SOURCE: Gaurav Sant, civil and environmental engineering associate professor. Graphic reporting by Xinchen Li, Daily Bruin contributor. Graphic by LeAnn Woo, Graphics editor.

Common prescriptive requirements	Occurrence in Specifications
Restriction on SCM quantity	85%
Maximum water-cement ratio	73%
Minimum cementitious content for floors	46%
Restriction on SCM type, characteristics	27%
Restriction on aggregate grading	25%

Source: Obla & Lobo, NRMCA, 2015

Design multiple concrete mixtures that meet performance specifications

Mixture	Cost	Env. Impact
А	Low	High
В	Moderate	Moderate
С	High	Low

Source: Obla & Lobo, NRMCA, 2015

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Transitioning to performance-based specifications requires collaboration to share <u>planning</u> and <u>risk</u> among all participants

- Architects
- Engineers
- Specifiers
- Constructors
- Developers
- DOT's

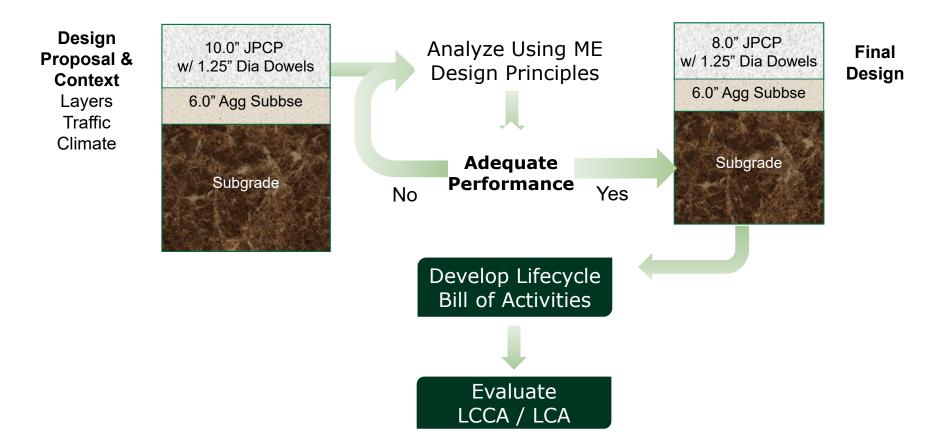
MIT CONCRETE SUSTAINABILITY HUB

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

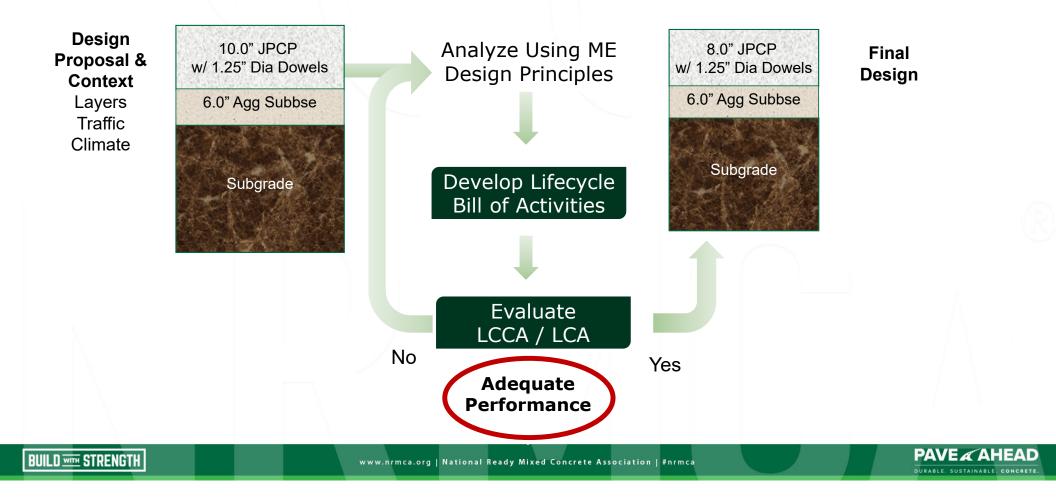
Life-Cycle Thinking	Research	Conduct research to	Using a holistic approach,
Innovation	Research	support benefits of concrete	 develop breakthroughs that will achieve <u>durable</u> and <u>sustainable</u>: homes,
Fiscal Responsibility Environmental Leadership	Tools	• Develop tools to support infrastructure decisions: life- cycle, cost, and hazard resistance	 buildings, and Infrastructure in ever more demanding environments.
Leadership			

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

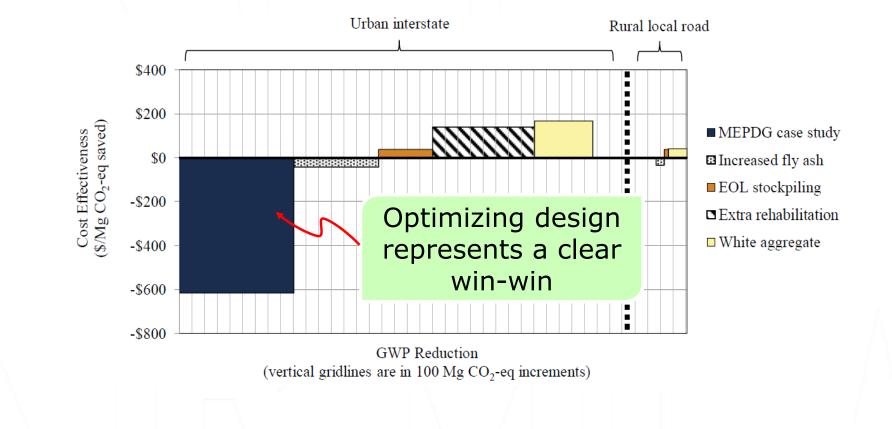

Incorporating "Green" Elements

SUSTAINABILITY: LOW IMPACT/ RESILIENT DESIGNS

BUILD WITH STRENGTH


www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Pavement design should be iterative



Pavement design should be iterative

Accelerated feedback \rightarrow more analyses, more improvement, better sustainability

Pavement design optimization saves GHG's & \$

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Incorporating "Green" Elements

SUSTAINABILITY: LOW IMPACT USE PHASE

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE A AHEAD

BUILD with STRENGTH

BUILD I STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Model Scenarios

High volume road:
65 mph highway
3 lanes each direction
4 shoulders
Daily traffic: 139,000
(Of which trucks: 6,672)

Moderate volume road: 35 mph urban road 2 lanes in each direction 4 shoulders Daily traffic: 23,400 (Of which trucks: 1,357)

Low volume road: 35 mph rural road 1 lane in each direction No shoulder Daily traffic: 5,200 (Of which trucks: 468)

BUILD WITH STRENGTH

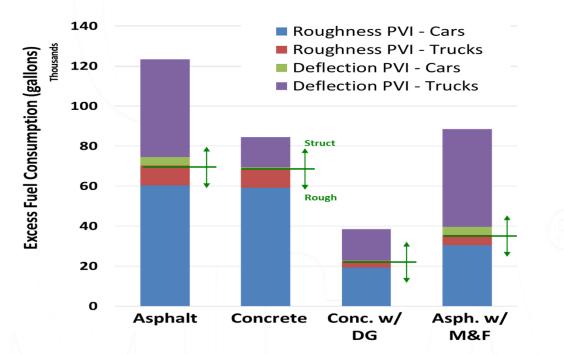
www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Pavement-Vehicle Interaction (PVI)

BUILD WITH STRENGTH

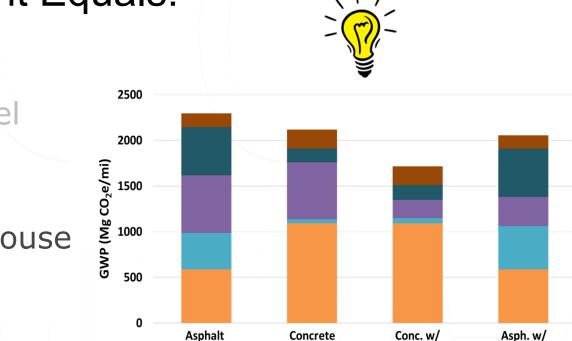
www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Deflection


Roughness

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca


Stiffer Pavement Equals:

 0.5 to 3% reduction in fuel consumption (trucks)

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

DG

Stiffer Pavement Equals:

- 0.5 to 3% reduction in fuel consumption (trucks)
- Lower Green House Gas Emissions

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

PAVE AHEAD

End of Life
Deflection PVI

M & R

M&F

Roughness PVI

Initial Const.

Stiffer Pavement Equals:

- 0.5 to 3% reduction in fuel consumption (trucks)
- Lower Green House
 Gas Emissions
- Lower User Costs

DURABLE, SUSTAINABLE, CONCRETI

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

Sustainability affected at different stages:

- Materials selection
- Design
- Asset management
- Use-Phase

Various ways to disclose/quantify

 Method chosen is dependent on desired outcome

PAVE & AHEAD

URABLE. SUSTAINABLE. CONCRI

In Summary...

CARBON

CURE...

4. 3 Part Series: Part 2 - Portland Limestone Cement: 'Equivalent' Performance to Type I/II with a Smaller Carbon Footprint

March 17th 2021

2. How to Design Industrial and Light Duty Parking Lot Asphalt Pavements

RESCHEDULED FOR MARCH 25th, 2021

Mike Harrell, Principal Engineer, Applied Research Associates and Mike Ward, Operations Manager, Rabine Paving Group

5. 3 Part Series: Part 3 - How Specifying Carbon Cure in Your Parking lot Concrete Can Lower CO2 Emissions

April 7th 2021

Allison Faimer, Market Development Manager, CarbonCure Technologies and Ryan Cialdella, Vice President of Customer Development, Ozinga

Read More

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca

BUILD WITH STRENGTH

www.nrmca.org | National Ready Mixed Concrete Association | #nrmca