How to Design Concrete Parking Lots - ACI 330R-08

a state and the

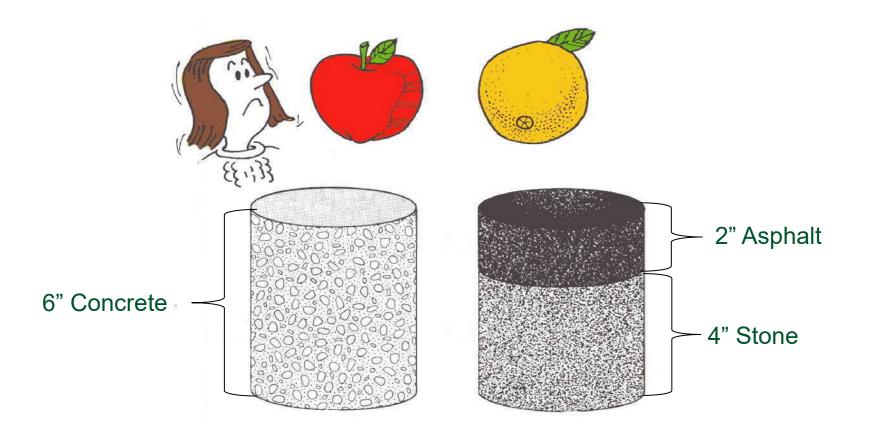
Luke McHugh, PE Senior Director, Local Paving National Ready Mixed Concrete Association

National Ready Mixed Concrete Association

- National Trade Association Established in 1930
- HQ in Alexandria, VA
- 1,400+ Member Companies
- NRMCA Represents ~75% of North American Ready Mixed Production
- Mission Serve Industry and Partners Through:
 - Compliance and Operations
 - Engineering
 - Government Affairs
 - Local Paving: Pave Ahead[™] Initiative (<u>PaveAhead.com</u>)
- Structures and Sustainability: Build With Strength[™] Initiative

 NRMCA

SUSTAINABLE.


NRMCA Disclaimer

- This presentation has been prepared solely for information purposes. It is intended solely for the use of
 professional personnel, competent to evaluate the significance and limitations of its content, and who
 will accept full responsibility for the application of the material it contains. The National Ready Mixed
 Concrete Association and any other organizations cooperating in the preparation of this presentation
 strive for accuracy but disclaim any and all responsibility for application of the stated principles or for the
 accuracy of the content or sources and shall not be liable for any loss or damage arising from reliance
 on or use of any content or principles contained in this presentation.
- Unless otherwise indicated, all materials in this presentation are copyrighted to the National Ready Mixed Concrete Association. All rights reserved. Therefore reproduction, modification or retransmission in any form is strictly prohibited without the prior written permission of the National Ready Mixed Concrete Association.
- ©2015 National Ready Mixed Concrete Association.

These are NOT equal!

Problems with Under-designing Pavements

"Under-designing roads can mean more expensive repairs for local towns and counties in the long run."

Cornell's Dr. David Orr, PE.

"When an agency does not prepare a specific pavement design, what ends up getting built is often times underbuilt. *While they might have saved some money at the time of building, the cost comes back to bite when the road then needs to be rebuilt earlier than expected.*"

Reference: Rutgers Center for Advanced Infrastructure and Transportation

What do engineers currently use to design concrete pavements?

Nothing...we only design asphalt pavements

What we've always used

Whatever the Geotechnical Engineer recommends

If it works for the DOT, it's good for me

AASHTO Design Guide – '72, '86, '93

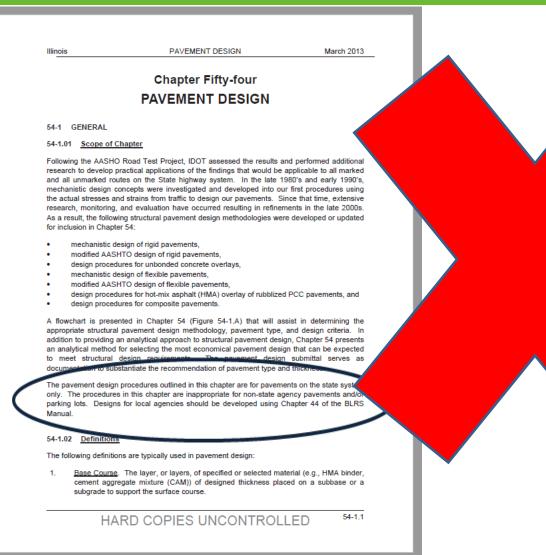
IDOT Pavement Design

IDOT Pavement Design

Chapter Fifty-four

PAVEMENT DESIGN

BUREAU OF DESIGN AND ENVIRONMENT MANUAL


• IDOT

- Chapter Fifty-Four
- Pavement Design

First Page...

• "The pavement design redures outlined in this for are for pavements on state system only."

the procedures in this pter are inappropriate for tate agency pavements parking lots."

IDOT Mechanistic Design Method

Illinois	PAVEMENT DESIGN	March 2013		
54-1.03 Pavement	t Design Methodologies			
54-1.03(a) Mecha				
Since the completion new highway mater resulted in improved although common pi the time of the AAS and better address n procedures were de actual performance.	In of the AASHO Road Test Project, the Department h rials and procedures to improve pavement constructi d material usage, construction procedures, and paver ractice today, were neither envisioned nor included in o SHO Road Test. Therefore, to supplement the AASHC modern pavement design, mechanistically based structu eveloped using structural mechanical analysis, comp and response of existing pavement sections.	on. This effort has ment designs which, design procedures at D Road Test Project iral pavement design puter modeling, and		pont dosign procedures a
panels and full-dept	th HMA designs with HMA surface and binder. The ins, and deflections experienced by the pavement to de	procedures use the		ment design procedures a
	that are considered in mechanistic designs include:		20	CP designs with nominal 15-
design HMA	strain,		ap	CP designs with norminal 15-
	ment HMA mixture temperature, mixture modulus (Е _{нма}),			
 subgrade sup 	pport ratio (SSR),		par	
	ility of 95% (HMA and PCC), CC edge support,		'	
	CC base erosion,			
 PCC joint spatial PCC stresses 				
	s. 2 for definitions of these factors.			
	eet which will perform the mechanistic pavement de	sign calculations is		
54-1.03(b) Modifie	ed AASHTO			
performance equation magnitude and conf	TO design procedures are based on the AASHO R ons, which correlate performance of test sections with p figuration of the axle load, and the number of axle-loa are necessarily limited to the following factors:	avement design, the		
 physical envi 	ironment of the Road Test Project,		•	•

PAVE AHEAD

axle loads used and number of axle-load applications experienced,

range of pavement thicknesses included in the experiments,

specific times and rates of application of the test traffic,

materials used in the test pavements,

construction techniques employed, and

٠

٠

٠

.

٠

IDOT Modified AASHTO Method

Illinois PAVEMENT DESIGN March 2013

54-1.03 Pavement Design Methodologies

54-1.03(a) Mechanistic

Since the completion of the AASHO Road Test Project, the Department has developed many new highway materials and procedures to improve pavement construction. This effort has resulted in improved material usage, construction procedures, and pavement designs which, although common practice today, were neither envisioned nor included in design procedures at the time of the AASHO Road Test. Therefore, to supplement the AASHO Road Test Project and better address modern pavement design, mechanistically based structural pavement design procedures were developed using structural mechanical analysis, computer modeling, and actual performance and response of existing pavement sections.

Mechanistic pavement design procedures are applicable to JPCP designs with nominal 15-ft panels and full-depth HMA designs with HMA surface and binder. The procedures use the actual stresses, strains, and deflections experienced by the pavement to determine its expected fatigue life. Factors that are considered in mechanistic designs include:

- design HMA strain,
- design pavement HMA mixture temperature,
- design HMA mixture modulus (E_{HMA}),
- subgrade support ratio (SSR),
- design reliability of 95% (HMA and PCC),
- degree of PCC edge support,
- degree of PCC base erosion,
- PCC joint spacing, and
- PCC stresses.

54-1.6

See Section 54-1.02 for definitions of these factors

An Excel spreadsheet which will perform the mechanistic pavement design elculations is available on the IDOT website.

54-1.03(b) Modified AASHTO

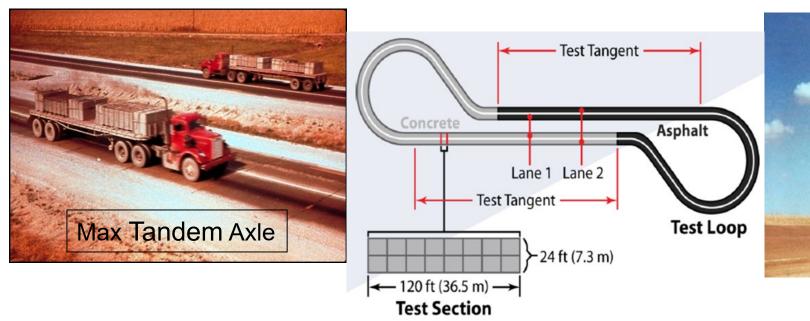
The modified AASHTO design procedures are based on the AASHO Road Test pavement performance equations, which correlate performance of test sections with pavement design, the magnitude and configuration of the axle load, and the number of axle-load applications. The AASHTO equations are necessarily limited to the following factors:

- physical environment of the Road Test Project,
- materials used in the test pavements,
- range of pavement thicknesses included in the experiments,
- axle loads used and number of axle-load applications experienced,
- specific times and rates of application of the test traffic,
- construction techniques employed, and

LARD COPIES UNCONTRO

"The modified AASHTO design procedures are based on the AASHO Road Test pavement performance equations, which correlate performance of test sections with pavement design, the magnitude and configuration of the axle load, and the number of axle-load applications. The AASHTO equations are necessarily limited to the following factors:

- physical environment of the Road Test Project,
- materials used in the test pavements,
- range of pavement thicknesses included in the experiments,
- axle loads used and number of axle-load applications experienced,
- specific times and rates of application of the test traffic,
- construction techniques employed, and
- climatic cycles experienced during construction and testing of the experimental facility."



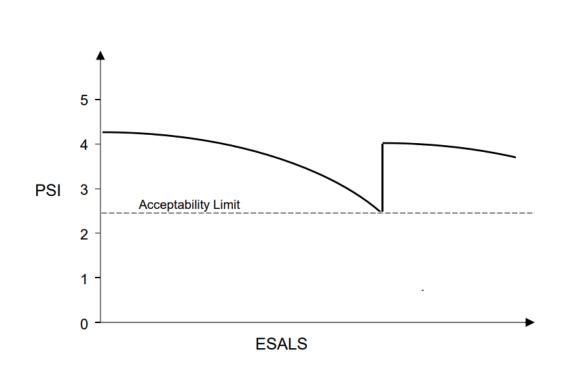
AASHTO 93 Design Guide

Source of Much of What We Know About AASHTO Pavement Design

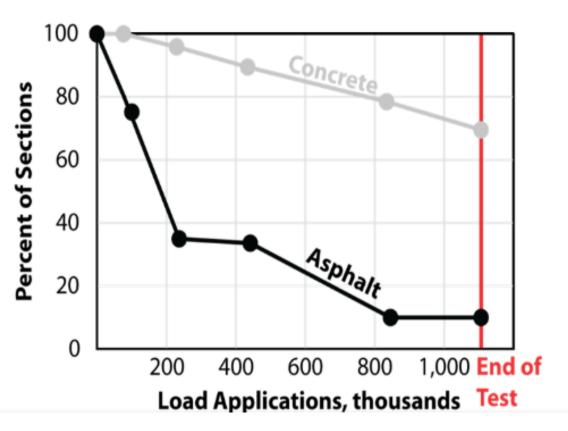
- AASHO Road Test (1958-1960)
- Ottawa, Illinois 1.1 Mil Reps
- Wholly empirical
- Included 368 concrete and 468 asphalt sections
- Focus was highway pavement

Max Single Axle

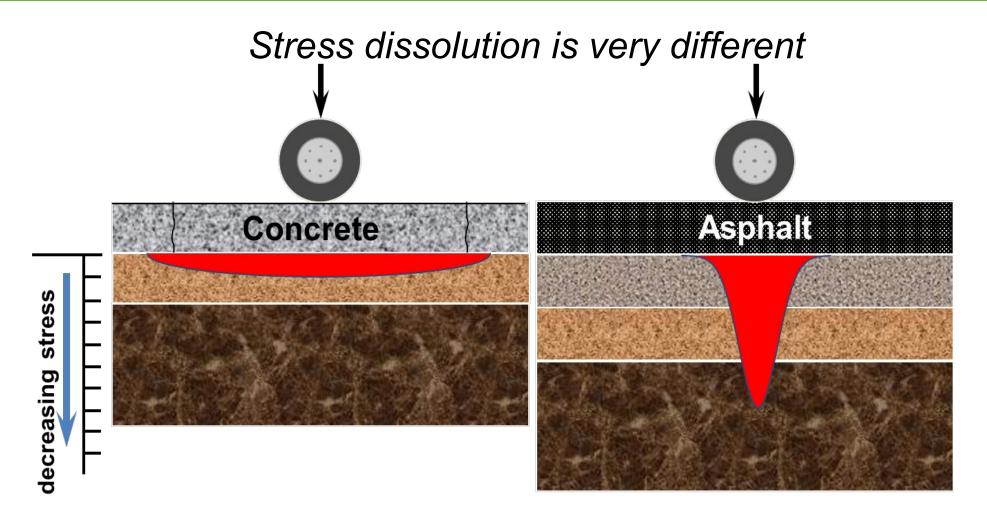
Test Sections or *Guessed Sections*


Necessary Thickness was Guessed! TYPICAL SECTIONS ASPHALT THICKNESS SURFACE BASE SUBBASE CONCRETE THICKNESS _____ 5" _____ 10" _____ 15" _____ 20" CONCRETE SUBBASE Subgrade = Clay Soil

DURABLE, SUSTAINABLE, CONCRETE,


Source: Ferrebee ACPA

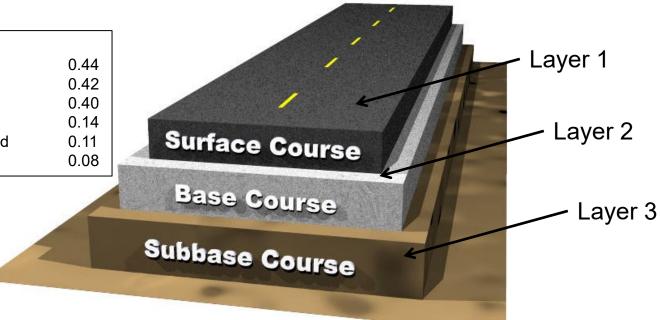
Serviceability Index


Pavement Performance

PERCENT SURVIVING WITH PSI ABOVE 2.5

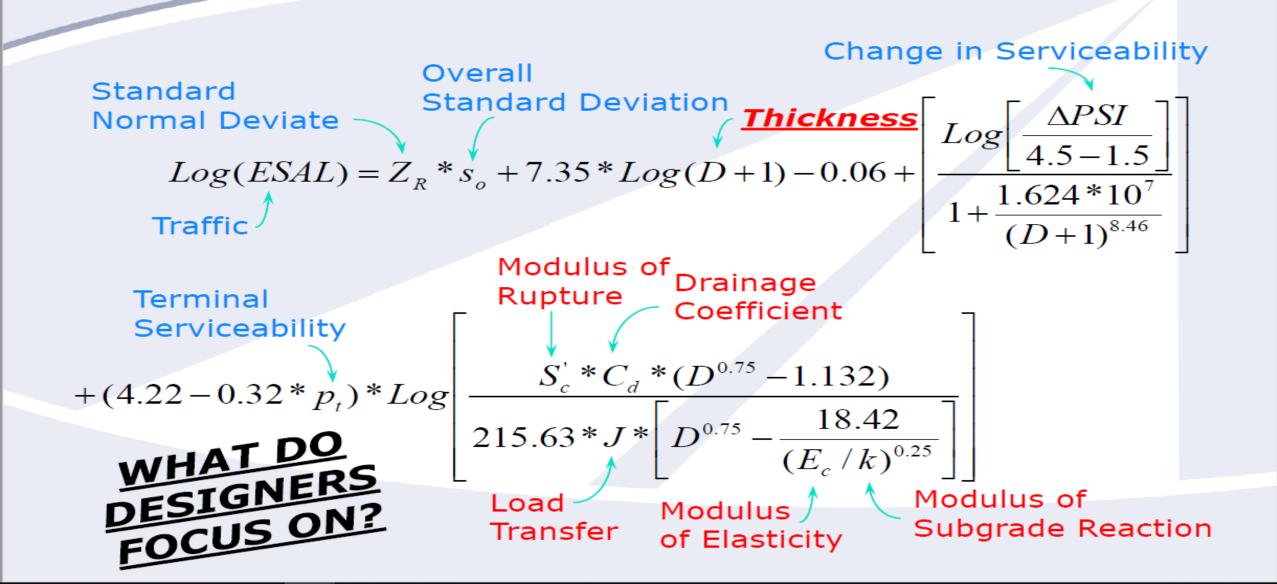
Design Elements

Design Tools


$$SN = a_1D_1 + a_2m_2D_2 + a_3m_3D_3 + \dots a_im_iD_i$$

Where:

 a_i = structural coefficient representing the relative strength of the pavement layer.


- m_i = drainage coefficient representing the ability of the layer to drain.
- D_i = layer thickness, in.

<u>Typical Coefficient Values (a_i):</u>	
Asphalt Surface	(
Asphalt Binder	
Asphalt Base	
Crushed Stone Base	
Lime/Cement Modified Roadbed	
Rock Roadbed	

1986-93 JPCP AASHTO 93 Equation

AASHTO Road Test

- All transverse joints were doweled at the same spacing JPCP @ 15 ft and JRCP @ 40 ft
- AASHTO equation does not address joint spacing
- AASHTO 93 rigid pavement design equation is very sensitive to the joint load transfer coefficient
 - J Factor for undoweled pavements is simply a guess and based on very conservative extrapolation
- Improve load transfer in thinner pavements using short joint spacing
- One of the main reasons we highly encourage **NOT** using AASHTO 93

There's Another Way

Question:

What should engineers use to design concrete pavements for local roads and parking lots?

ACI 325 8 ACI 330!

What is ACI 325 & 330?

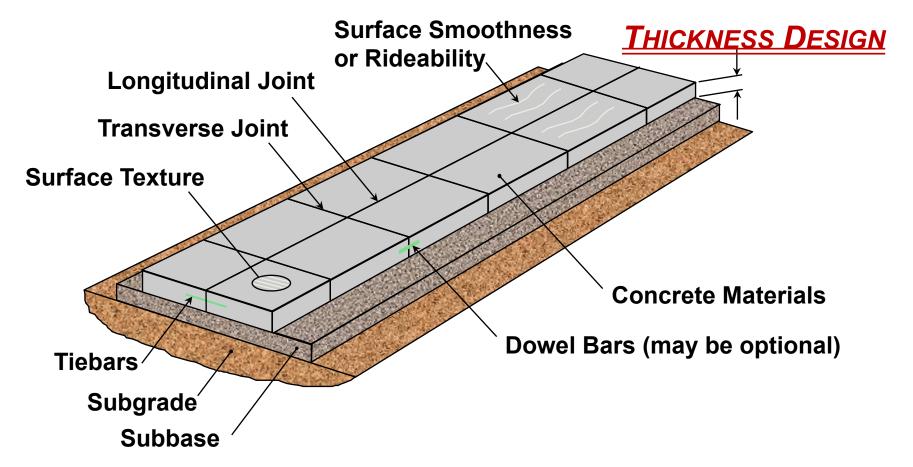
Committees within American Concrete Institute

- Leading Industry Experts & Engineers
- Complete and Concise for Design and Construction
 - ✓ ACI 325.12R-02 (Reapproved 2013): Guide for Design of Jointed Concrete Pavements for Streets and Local Roads
 - ✓ ACI 330R-08: Guide for Design and Construction of Concrete Parking Lots
 - ✓ ACI 325.9R-15: Guide for Construction of Concrete Pavements

Overview of ACI 330R-08

- Introduction and Scope Chapter 1
- Notation and Definitions Chapter 2
- Pavement Design Chapter 3
- Materials Chapter 4
- Construction Chapter 5

- Inspection and Testing Chapter 6
- Maintenance and Repairs Chapter 7
- Appendices
 - Procedures for Concrete Pavement Design
 - Subgrade
 - Details


Overview of ACI 330R-08

- Introduction and Scope Chapter 1
- Notation and Definitions Chapter 2
- Pavement Design Chapter 3
- Materials Chapter 4
- Construction Chapter 5

- Inspection and Testing Chapter 6
- Maintenance and Repairs Chapter 7
- Appendices -
 - Procedures for Concrete Pavement Design
 - Subgrade
 - Details

Design Elements

Pavement Design Using ACI 330

Concrete Pavement Design

PCA Design Method

- Two failure modes considered:
 - Fatigue failure due to slab flexure
 - Erosion failure due to foundation compression
- · Edge loads produce the worst stresses
 - Fatigue based on tensile stress due to edge loads
- Corner loads produce the worst <u>deflections</u>
 - Erosion based on deflections due to corner loads

k – modulus of subgrade

ADTT – average daily truck traffic

MOR – modulus of rupture / flexural strength

k – modulus of subgrade or

CBR – California Bearing Ratio (R and SSV)

Table 3.1—Subgrade soil types and approximate support values (Portland Cement Association 1984a,b; American Concrete Pavement Association 1982)

Type of soil	Support	<i>k</i> , psi/in.	CBR	R	SSV
Fine-grained soils in which silt and clay-size particles predominate	Low	75 to 120	2.5 to 3.5	10 to 22	2.3 to 3.1
Sands and sand-gravel mixtures with moderate amounts of silt and clay	Medium	130 to 170	4.5 to 7.5	29 to 41	3.5 to 4.9
Sand and sand-gravel mixtures relatively free of plastic fines	High	180 to 220	8.5 to 12	45 to 52	5.3 to 6.1

Notes: CBR = California bearing ratio; R = resistance value; and SSV = soil support value. 1 psi = 0.0069 MPa, and 1 psi/in. = 0.27 MPa/m.

Key Terminology

-Modulus	of subgrad	de reactior	n <i>k</i> *
	Sub-base	thickness	
4 in.	6 in.	9 in.	12 in.
	Granular aggr	egate subbase	
65	75	85	110
130	140	160	190
220	230	270	320
320	330	370	430
	Cement-trea	ited subbase	
170	230	310	390
280	400	520	640
470	640	830	
	Other treat	ed subbase	
85	115	170	215
175	210	270	325
280	315	360	400
350	385	420	490
	4 in. 65 130 220 320 170 280 470 85 175 280	Sub-base 4 in. 6 in. Granular aggr 65 75 130 140 220 230 320 330 Cement-treat 170 230 280 400 470 640 Other treat 85 115 175 210 280 315	Granular aggregate subbase 65 75 85 130 140 160 220 230 270 320 330 370 Cement-treated subbase 170 230 310 280 400 520 470 640 830 Other treated subbase 85 115 170 175 210 270 280 315 360

^{*}For subbase applied over different subgrades, psi/in. (Portland Cement Association 1984a,b; Federal Aviation Administration 1978). Note: 1 in. = 25.4 mm, and 1 psi/in. = 0.27 MPa/m.

ADTT – average daily truck traffic

Table 3.3—Traffic categories*

1. Car parking	areas and access	lanes—Category A
----------------	------------------	------------------

2. Shopping center entrance and service lanes—Category B

- 3. Bus parking areas, city and school buses Parking area and interior lanes—Category B Entrance and exterior lanes—Category C
- 4. Truck parking areas-Category B, C, or D

Truck type	Parking areas and interior lanes	Entrance and exterior lanes
Single units (bobtailed trucks)	Category B	Category C
Multiple units (tractor trailer units with one or more trailers)	Category C	Category D

*Select A, B, C, or D for use with Table 3.4.

MOR – modulus of rupture or flexural strength

*Concrete Industry uses compressive strength (f'c)

4,000 psi compressive ~ 600 psi flexural

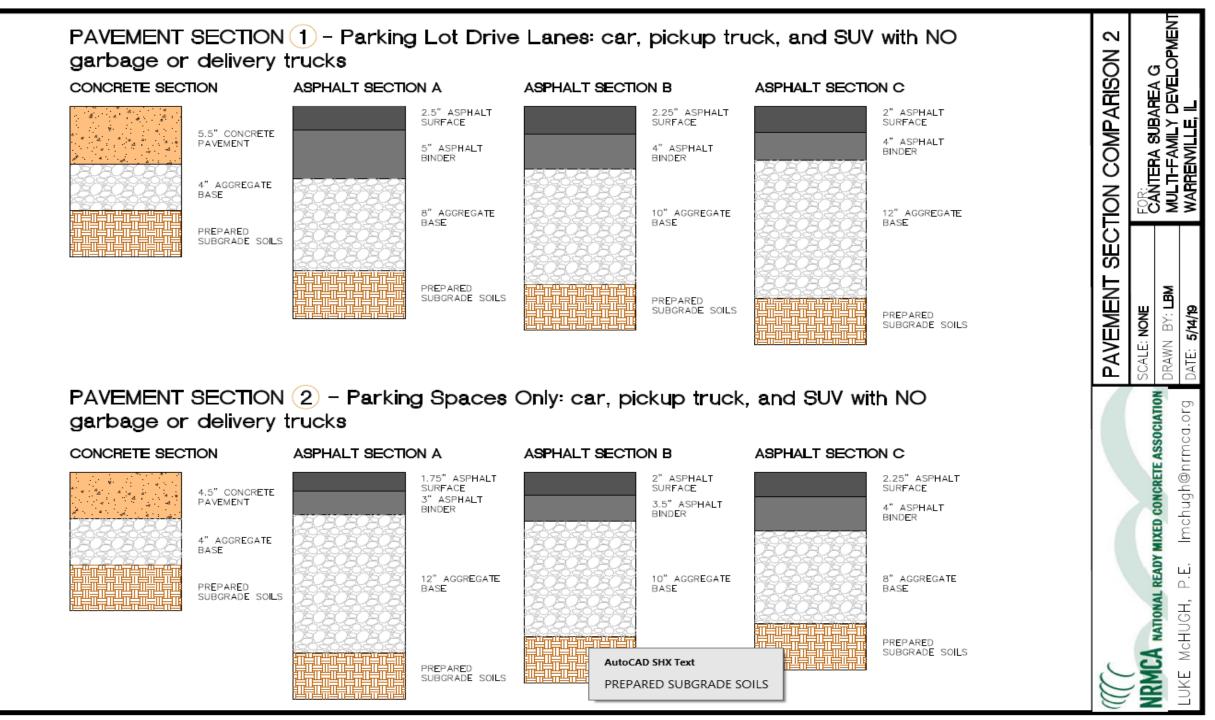
ACI 330R-08 Guidelines – Table 3.4

		<i>k</i> = 500	psi/in. (CE	BR = 50, I	R = 86)	<i>k</i> = 400	psi/in. (C	CBR = 38	, R = 80)	k = 300) psi/in. (C	BR = 26, R	L = 67)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
Category	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	D (ADTT = 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		k = 200	psi/in. (CE	BR = 10, I	R = 48)	k = 100) nsi/in ((CBR = 3,	R = 18)	k = 5	0 psi/in. (C	BR = 2 R	= 5)
			-		,		, bar ur. (10 10)		o psi/m. (e	DR 2, R	5)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	MOR, psi: A (ADTT =1)	650 4.0	600 4.0	550 4.0	, 		· ·		, 		• · ·		,
Traffic Category	-				500	650	600	550	500	650	600	550	500
	A (ADTT =1)	4.0	4.0	4.0	500 4.5	650 4.0	600 4.5	550 4.5	500 5.0	650 4.5	600 5.0	550 5.0	500 5.5
	A (ADTT =1) A (ADTT = 10)	4.0 4.5	4.0 4.5	4.0 5.0	500 4.5 5.0	650 4.0 4.5	600 4.5 5.0	550 4.5 5.0	500 5.0 5.5	650 4.5 5.0	600 5.0 5.5	550 5.0 5.5	500 5.5 6.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25)	4.0 4.5 5.0	4.0 4.5 5.0	4.0 5.0 5.5	500 4.5 5.0 6.0	650 4.0 4.5 5.5	600 4.5 5.0 5.5	550 4.5 5.0 6.0	500 5.0 5.5 6.0	650 4.5 5.0 6.0	600 5.0 5.5 6.0	550 5.0 5.5 6.5	500 5.5 6.0 7.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300)	4.0 4.5 5.0 5.5	4.0 4.5 5.0 5.5	4.0 5.0 5.5 6.0	500 4.5 5.0 6.0 6.5	650 4.0 4.5 5.5 6.0	600 4.5 5.0 5.5 6.0	550 4.5 5.0 6.0 6.5	500 5.0 5.5 6.0 7.0	650 4.5 5.0 6.0 6.5	600 5.0 5.5 6.0 7.0	550 5.0 5.5 6.5 7.0	500 5.5 6.0 7.0 7.5
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300) C (ADTT = 100)	4.0 4.5 5.0 5.5 5.5	4.0 4.5 5.0 5.5 6.0	4.0 5.0 5.5 6.0 6.0	500 4.5 5.0 6.0 6.5 6.5	650 4.0 4.5 5.5 6.0 6.0	600 4.5 5.0 5.5 6.0 6.5	550 4.5 5.0 6.0 6.5 6.5	500 5.0 5.5 6.0 7.0 7.0	650 4.5 5.0 6.0 6.5 6.5	600 5.0 5.5 6.0 7.0 7.0	550 5.0 5.5 6.5 7.0 7.5	500 5.5 6.0 7.0 7.5 7.5

Thickness criteria based on soil support...

		<i>k</i> = 500	psi/in. (CE	BR = 50, 1	R = 86)	k = 400	psi/in. (C	CBR = 38	, R = 80)	k = 300) psi/in. (Cl	BR = 26, R	k = 67)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
Category	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	D (ADTT = 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		<i>k</i> = 200	psi/in. (CE	BR = 10, 1	R = 48)	k = 100) psi/in. ((CBR = 3,	R = 18)	<i>k</i> = 5	0 psi/in. (C	BR = 2, R	= 5)
	MOR, psi:	k = 200 650	psi/in. (CE 600	3R = 10, 1	R = 48) 500	k = 100 650) psi/in. ((600	CBR = 3, 550	R = 18) 500	k = 5 650	0 psi/in. (C 600	EBR = 2, R 550	= 5) 500
Traffic	MOR, psi: A (ADTT =1)		• · ·		, 		• ·		, 		• •		,
Traffic Category		650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT =1)	650 4.0	600 4.0	550 4.0	500 4.5	650 4.0	600 4.5	550 4.5	500 5.0	650 4.5	600 5.0	550 5.0	500 5.5
	A (ADTT =1) A (ADTT = 10)	650 4.0 4.5	600 4.0 4.5	550 4.0 5.0	500 4.5 5.0	650 4.0 4.5	600 4.5 5.0	550 4.5 5.0	500 5.0 5.5	650 4.5 5.0	600 5.0 5.5	550 5.0 5.5	500 5.5 6.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25)	650 4.0 4.5 5.0	600 4.0 4.5 5.0	550 4.0 5.0 5.5	500 4.5 5.0 6.0	650 4.0 4.5 5.5	600 4.5 5.0 5.5	550 4.5 5.0 6.0	500 5.0 5.5 6.0	650 4.5 5.0 6.0	600 5.0 5.5 6.0	550 5.0 5.5 6.5	500 5.5 6.0 7.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300)	650 4.0 4.5 5.0 5.5	600 4.0 4.5 5.0 5.5	550 4.0 5.0 5.5 6.0	500 4.5 5.0 6.0 6.5	650 4.0 4.5 5.5 6.0	600 4.5 5.0 5.5 6.0	550 4.5 5.0 6.0 6.5	500 5.0 5.5 6.0 7.0	650 4.5 5.0 6.0 6.5	600 5.0 5.5 6.0 7.0	550 5.0 5.5 6.5 7.0	500 5.5 6.0 7.0 7.5
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300) C (ADTT = 100)	650 4.0 4.5 5.0 5.5 5.5	600 4.0 4.5 5.0 5.5 6.0	550 4.0 5.0 5.5 6.0 6.0	500 4.5 5.0 6.0 6.5 6.5	650 4.0 4.5 5.5 6.0 6.0	600 4.5 5.0 5.5 6.0 6.5	550 4.5 5.0 6.0 6.5 6.5	500 5.0 5.5 6.0 7.0 7.0	650 4.5 5.0 6.0 6.5 6.5	600 5.0 5.5 6.0 7.0 7.0	550 5.0 5.5 6.5 7.0 7.5	500 5.5 6.0 7.0 7.5 7.5

...concrete strength...


		<i>k</i> = 500	psi/in. (CE	3R = 50, 1	R = 86)	<i>k</i> = 400	psi/in. (C	CBR = 38	, R = 80)	k = 300) psi/in. (C	BR = 26, R	L = 67)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
Category	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	D (ADTT = 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		k = 200	psi/in. (CE	BR = 10, I	R = 48)	<i>k</i> = 100) psi/in. ((CBR = 3,	R = 18)	<i>k</i> = 5	0 psi/in. (C	BR = 2, R	= 5)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	A (ADTT =1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
Category	A (ADTT = 10)	4.5	4.5	5.0	5.0	4.5	5.0	5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	D (ADTT = 700)	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0

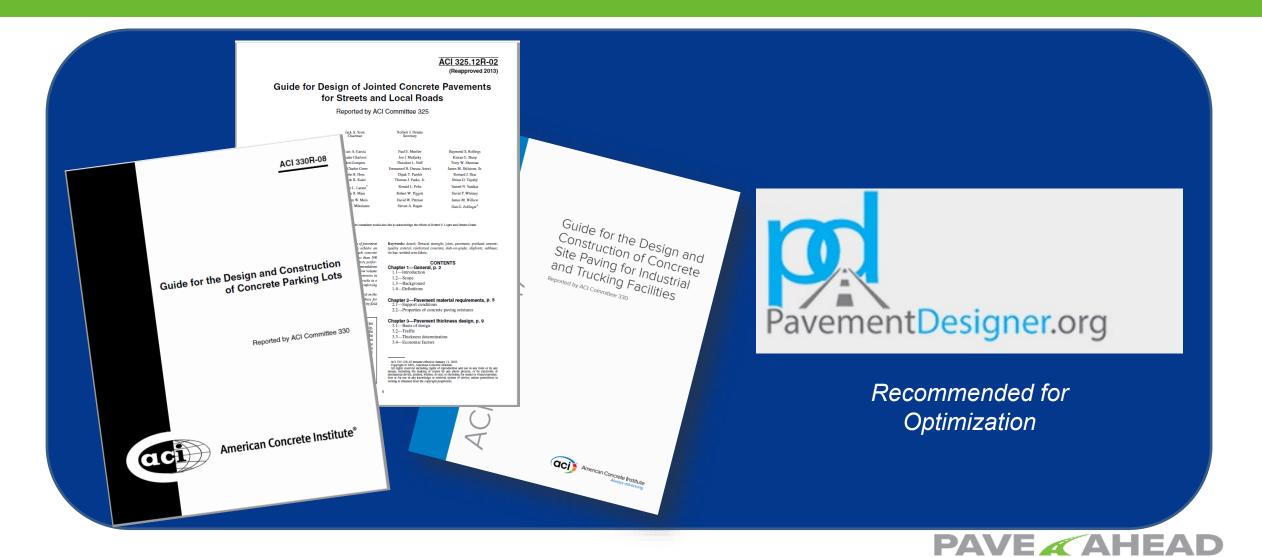
...and Average Daily Truck Traffic (ADTT)

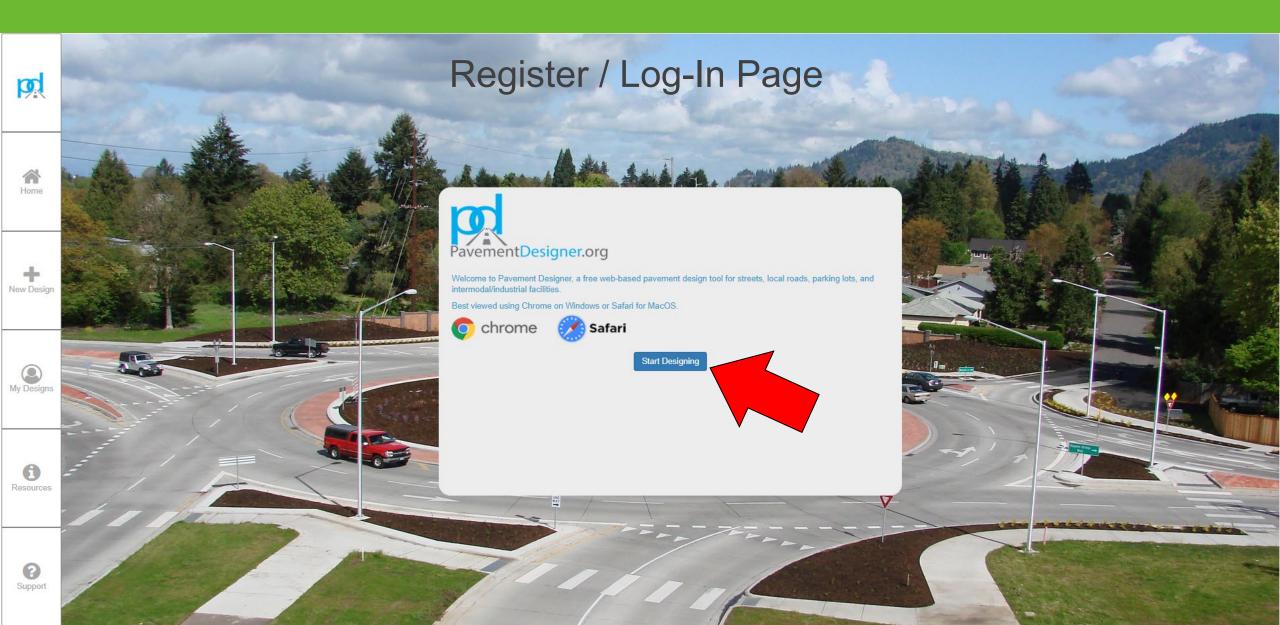
		<i>k</i> = 500	psi/in. (CE	BR = 50, I	R = 86)	<i>k</i> = 400	psi/in. (C	CBR = 38	, R = 80)	k = 300) psi/in. (C	BR = 26, R	R = 67)
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
Category	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	D (ADTT = 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		<i>k</i> = 200	psi/in. (CE	BR = 10, I	R = 48)	<i>k</i> = 100) psi/in. (0	CBR = 3,	R = 18)	<i>k</i> = 5	0 psi/in. (C	CBR = 2, R	= 5)
	MOR, psi:	k = 200 650	psi/in. (CE 600	BR = 10, I	R = 48) 500	k = 100 650) psi/in. (0 600	CBR = 3,	R = 18)	k = 5 650	0 psi/in. (C 600	BR = 2, R 550	= 5) 500
Traffic	MOR, psi: A (ADTT =1)		• · ·		, 		· ·		, 		• · ·		,
Traffic Category	-	650	600	550	500	650	600	550	500	650	600	550	500
	A (ADTT =1)	650 4.0	600 4.0	550 4.0	500 4.5	650 4.0	600 4.5	550 4.5	500 5.0	650 4.5	600 5.0	550 5.0	500 5.5
	A (ADTT =1) A (ADTT = 10)	650 4.0 4.5	600 4.0 4.5	550 4.0 5.0	500 4.5 5.0	650 4.0 4.5	600 4.5 5.0	550 4.5 5.0	500 5.0 5.5	650 4.5 5.0	600 5.0 5.5	550 5.0 5.5	500 5.5 6.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25)	650 4.0 4.5 5.0	600 4.0 4.5 5.0	550 4.0 5.0 5.5	500 4.5 5.0 6.0	650 4.0 4.5 5.5	600 4.5 5.0 5.5	550 4.5 5.0 6.0	500 5.0 5.5 6.0	650 4.5 5.0 6.0	600 5.0 5.5 6.0	550 5.0 5.5 6.5	500 5.5 6.0 7.0
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300)	650 4.0 4.5 5.0 5.5	600 4.0 4.5 5.0 5.5	550 4.0 5.0 5.5 6.0	500 4.5 5.0 6.0 6.5	650 4.0 4.5 5.5 6.0	600 4.5 5.0 5.5 6.0	550 4.5 5.0 6.0 6.5	500 5.0 5.5 6.0 7.0	650 4.5 5.0 6.0 6.5	600 5.0 5.5 6.0 7.0	550 5.0 5.5 6.5 7.0	500 5.5 6.0 7.0 7.5
	A (ADTT =1) A (ADTT = 10) B (ADTT = 25) B (ADTT = 300) C (ADTT = 100)	650 4.0 4.5 5.0 5.5 5.5	600 4.0 4.5 5.0 5.5 6.0	550 4.0 5.0 5.5 6.0 6.0	500 4.5 5.0 6.0 6.5 6.5	650 4.0 4.5 5.5 6.0 6.0	600 4.5 5.0 5.5 6.0 6.5	550 4.5 5.0 6.0 6.5 6.5	500 5.0 5.5 6.0 7.0 7.0	650 4.5 5.0 6.0 6.5 6.5	600 5.0 5.5 6.0 7.0 7.0	550 5.0 5.5 6.5 7.0 7.5	500 5.5 6.0 7.0 7.5 7.5

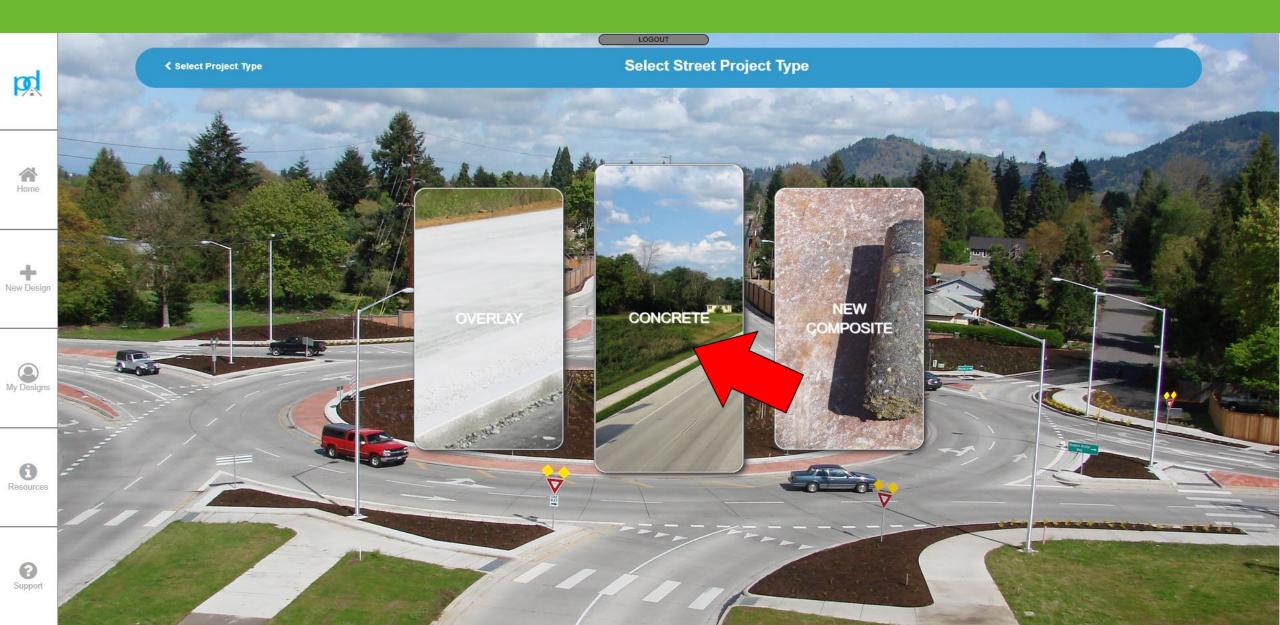
Recommend 49,060 Recommend 49,060 Recommend

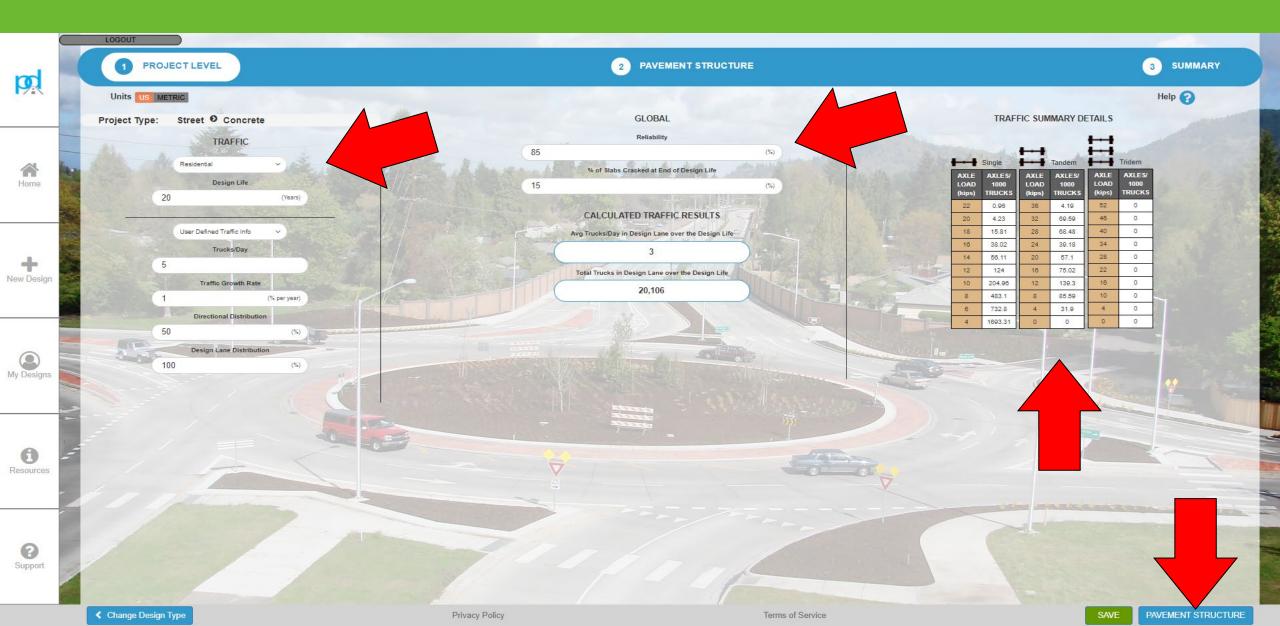
		<i>k</i> = 500 psi/in. (CBR = 50, R = 86)			<i>k</i> = 400 psi/in. (CBR = 38, R = 80)			<i>k</i> = 300 psi/in. (CBR = 26, R = 67)					
	MOR, psi:	650	600	550	500	650	600	550	500	650	600	550	500
Traffic Category	A (ADTT =1)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.5
	A (ADTT = 10)	4.0	4.0	4.0	4.5	4.0	4.0	4.5	4.5	4.0	4.5	4.5	4.5
	B (ADTT = 25)	4.0	4.5	4.5	5.0	4.5	4.5	5.0	5.5	4.5	4.5	5.0	5.5
	B (ADTT = 300)	5.0	5.0	5.5	5.5	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0
	C (ADTT = 100)	5.0	5.0	5.5	5.5	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0
	C (ADTT = 300)	5.0	5.5	5.5	6.0	5.5	5.5	6.0	6.0	5.5	6.0	6.0	6.5
	C (ADTT = 700)	5.5	5.5	6.0	6.0	5.5	5.5	6.0	6.5	5.5	6.0	6.5	6.5
	D (ADTT = 700)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
		<i>k</i> = 200 psi/in. (CBR = 10, R = 48)			<i>k</i> = 100 psi/in. (CBR = 3, R = 18)			k = 50 psi/in. (CBR = 2, R = 5)					
	MOR, psi:	650	600	550	500	650		550	500	650	600	550	500
Traffic Category	A (ADTT =1)	4.0	4.0	4.0	4.5	4.0	4.5	4.5	5.0	4.5	5.0	5.0	5.5
	A (ADTT = 10)	4.5	4.5	5.0	5.0	4.5		5.0	5.5	5.0	5.5	5.5	6.0
	B (ADTT = 25)	5.0	5.0	5.5	6.0	5.5	5.5	6.0	6.0	6.0	6.0	6.5	7.0
	B (ADTT = 300)	5.5	5.5	6.0	6.5	6.0	6.0	6.5	7.0	6.5	7.0	7.0	7.5
	C (ADTT = 100)	5.5	6.0	6.0	6.5	6.0	6.5	6.5	7.0	6.5	7.0	7.5	7.5
	C (ADTT = 300)	6.0	6.0	6.5	6.5	6.5	6.5	7.0	7.5	7.0	7.5	7.5	8.0
	C (ADTT = 700)	6.0	6.5	6.5	7.0	6.5	7.0	7.0	7.5	7.0	7.5	8.0	8.5
	D (ADTT = 700)	7.0	7.0	7.0	7.0	8.0	8.0	8.0	8.0	9.0	9.0	9.0	9.0

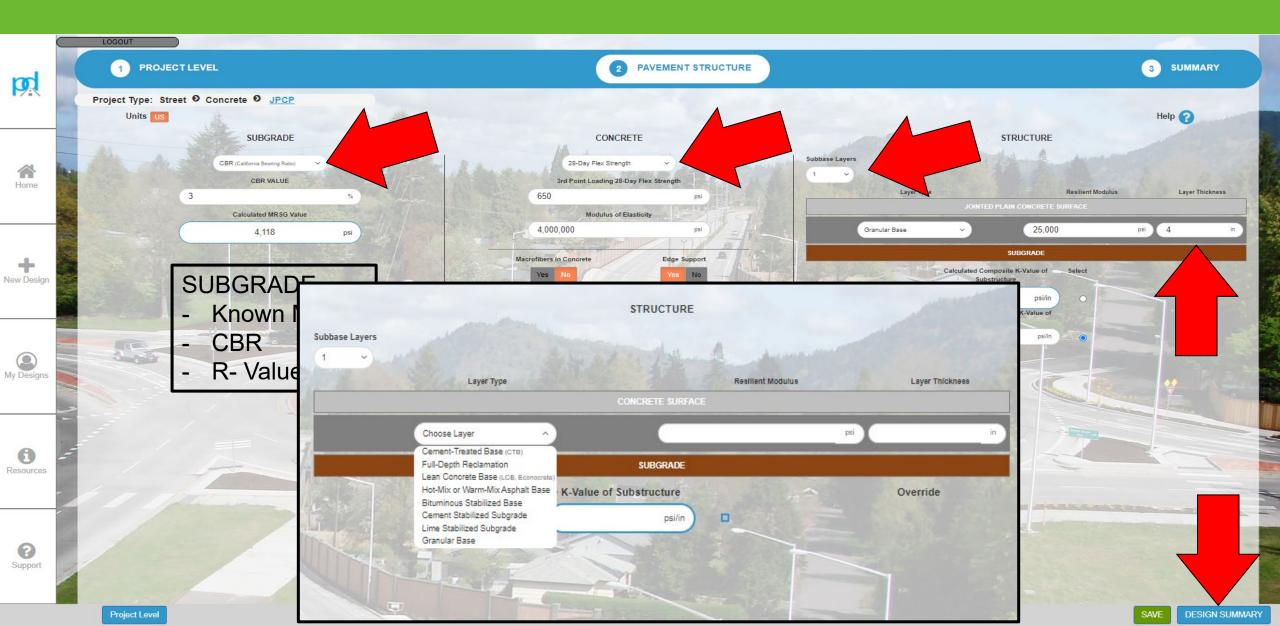
Guide Specifications

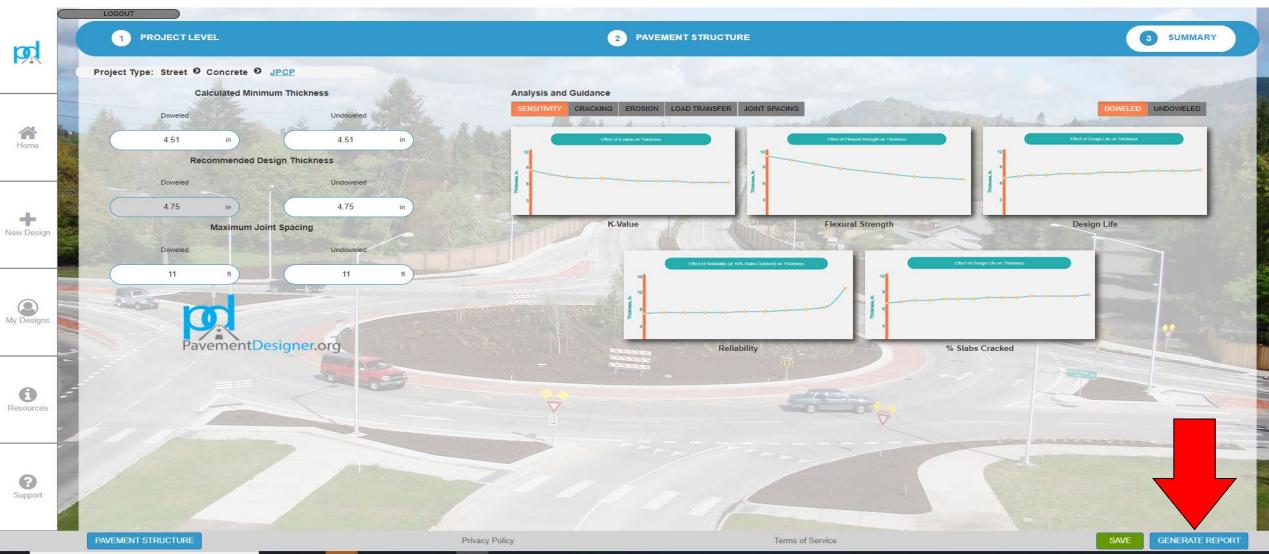



Street Design Using Pavement Designer.org


DURABLE. SUSTAINABLE. CONCRETE.


Design Software





DESIGN SUMMARY REPORT FOR

JOINTED-PLAIN CONCRETE PAVEMENT (JPCP)

DATE CREATED:

Thu Dec 03 2020 12:33:04 GMT-0500 (Eastern Standard Time)

Project Description

	Sample	Owner:			Zip Code		
Designer's Name:		Route:					
Project Description:							
Design Summary	1						
Recommended De		Doweled 4.75 in	Undoweled 4.75 in	Maximum Joi	int Spacing:	Doweled 11 ft	Undowele 11 ft
Calculated Minimu		4.51 in	4.51 in	Waximum 30	int opaoing.	TT K	
Pavement Struct	ure						
SUBBASE							
User-Defined Composit	e K-Value of Substrue	cture:	130 psi/in				
	Layer Type			Resilient Modu	ulus	Layer Th	nickness
		KAINTE	D PLAIN CONCRE				
		JUINIE	U PLAIN CONCRE	TE SURPAGE			
Gra	nular Base	ý.			psi		in
					-		
			SUBGRADE				
CONCRETE					su	GRADE	
CONCRETE 28-Day Flex Strength:	650 psi	Edge S	upport:	Yes	SUI CBR:	SGRADE	%
	650 psi 4000000 psi	-	upport: bers in Concrete:	Yes No	CBR:		
28-Day Flex Strength:		-			CBR:	3	
28-Day Flex Strength: Modulus of Elasticity:		-			CBR:	3	
28-Day Flex Strength: Modulus of Elasticity:		-		No	CBR:	3	
28-Day Flex Strength: Modulus of Elasticity:	4000000 psi	-		No	CBR: Calculated M	3	
28-Day Flex Strength: Modulus of Elasticity: Project Level	4000000 psi	Macrofi		No	CBR: Calculated M	3 RSG Value 4, 85 %	
28-Day Fiex Strength: Modulus of Elasticity: Project Level Spectrum Type: Design Life: US	4000000 psi TRAFFIC	Macrofi Residential 20 years FIC		No G Reliability: % Slabs Cracked at	CBR: Calculated M	3 RSG Value 4, 85 % e: 15 %	118 psi
28-Day Fiex Strength: Modulus of Elasticity: Project Level Spectrum Type: Design Life: US Trucks Per Day:	4000000 psi TRAFFIC	Macrofi Residential 20 years FIC 5	bers in Concrete:	No G Reliability: % Slabs Cracked at Avg Trucks/Day in D	CBR: Calculated M ELOBAL End of Design Lif	3 RSG Value 4, 85 % e: 15 % the Design Life	118 psi
28-Day Flex Strength: Modulus of Elasticity: Project Level Spectrum Type: Design Life: US Trucks Per Day: Traffic Growth R	4000000 psi TRAFFIC SER DEFINED TRAFF	Macrofi Residential 20 years FC 5 1 % per y	bers in Concrete:	No G Reliability: % Slabs Cracked at	CBR: Calculated M ELOBAL End of Design Lif	3 RSG Value 4, 85 % e: 15 % the Design Life	118 psi
28-Day Flex Strength: Modulus of Elasticity: Project Level Spectrum Type: Design Life: US Trucks Per Day:	4000000 psi TRAFFIC SER DEFINED TRAFF tate %: ibution:	Macrofi Residential 20 years FIC 5	bers in Concrete:	No G Reliability: % Slabs Cracked at Avg Trucks/Day in D	CBR: Calculated M ELOBAL End of Design Lif	3 RSG Value 4, 85 % e: 15 % the Design Life	118 psi

Design Method

The PCA design methodology from StreetPave, was used to produce these results.

Design Software

PavementDesigner.org

contained within PavementDesigner,

along the methodologies used and

Sec. Sec.					
Caundy sorting	100-0-0-0-00 (dec.)00-00	P. Physical Control of the Annual			
100.001.001.001.000					
			And and the other data		
theory .					
the start of the second starts in the second start of the second start is and the second start of the seco					
Ingenieration a Parise Metalolog Metalogy					
the other steps of the second state of	the boat \$10 and the second second second second second				
Marchenter and Article and Art		Hartson, B. (1999) March Street, Street, Street, Street, Nature 11, Nature			
Strategy of the second seco					
 Statistical and a characterization of the second sec					

Pavement Designer Intro Video

A quick video introduction to the features of PavementDesigner.org.

Access

Composite CRCP Intermodal JPCP Overlay Parking RCC

PavementDesignerPavementDesignerConcreteMap andJPCP TutorialOverlay

MethodologyA video tutorial of JPCP design using
PavementDesigner.org.A sitemap listing the solutionsAccess

Access JPCP

Overlay

WikiPave Page

Access Overlay

DURABLE. SUSTAINABLE. CONCRETE.

Composite CRCP Intermodal JPCP

Access

the process flow.

Overlay Parking RCC

Concrete Pavement Thickness*

CBR=3	CAT D	CBR=3		
w/4-inch	Semi-			
agg. base	Trailers			
k=130	600 psi	<i>k=100</i>		
55	6.0	35		
115	6.5	75		
260	7.0	150		
650	7.5	320		
1,950	8.0	725		
>10,000	8.5	2,000		

*Assumptions:

- 20-year design life
- 85% reliability
- 15% slabs cracked at the end of design life
- no dowels
- no industrial vehicles

ACI 330 position on subgrade/subbase

"A well-prepared, uniform subgrade at the correct elevation is essential to the construction of a quality pavement."

"The subgrade should have a dense, firm, and uniformly smooth surface when concrete is placed on it."

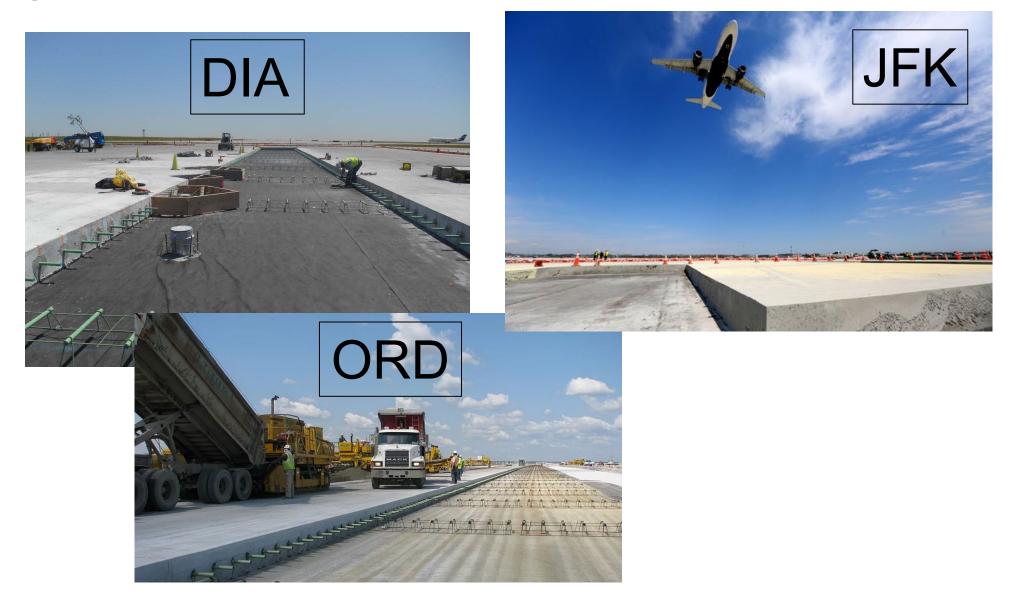
"Granular aggregate subbases are not normally used for concrete parking lots."

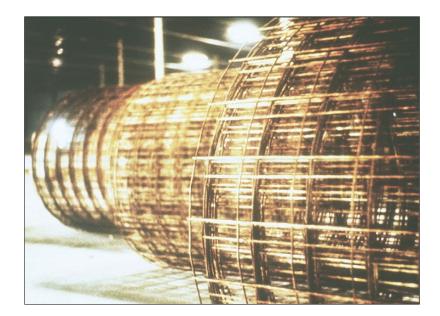
Do you need an aggregate base layer?

May warrant consideration if:

Construction platform is needed Subgrade is very poor quality Heavy truck traffic & load transfer concerns Pumping of subgrade is likely

Can result in higher k value for design and slightly thinner concrete section



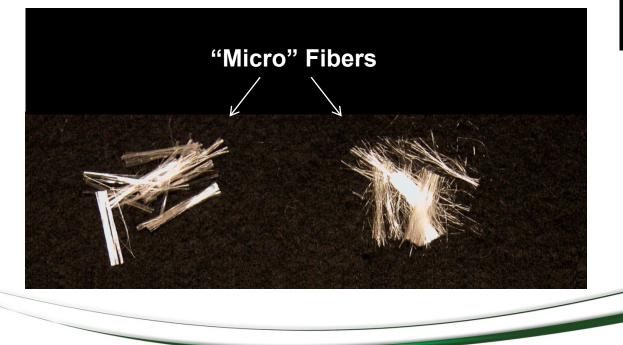

Do you *need* steel in your mat?

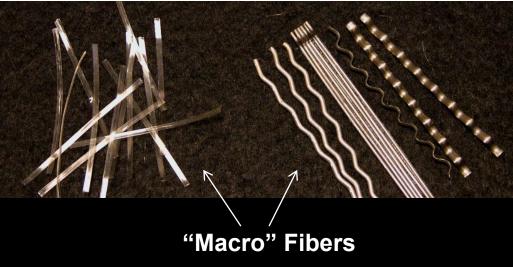
Airport Pavements are Unreinforced Concrete

Secondary Steel Reinforcement

- <u>Does not</u> make concrete stronger!
- <u>Does not</u> stop concrete from cracking!
- Holds concrete together <u>when</u> it cracks

Proper placement of secondary steel reinforcement




When used, the purpose of secondary steel reinforcement is to keep cracks from opening. To do this, it must be located above the mid-thickness.

What about Fibers?

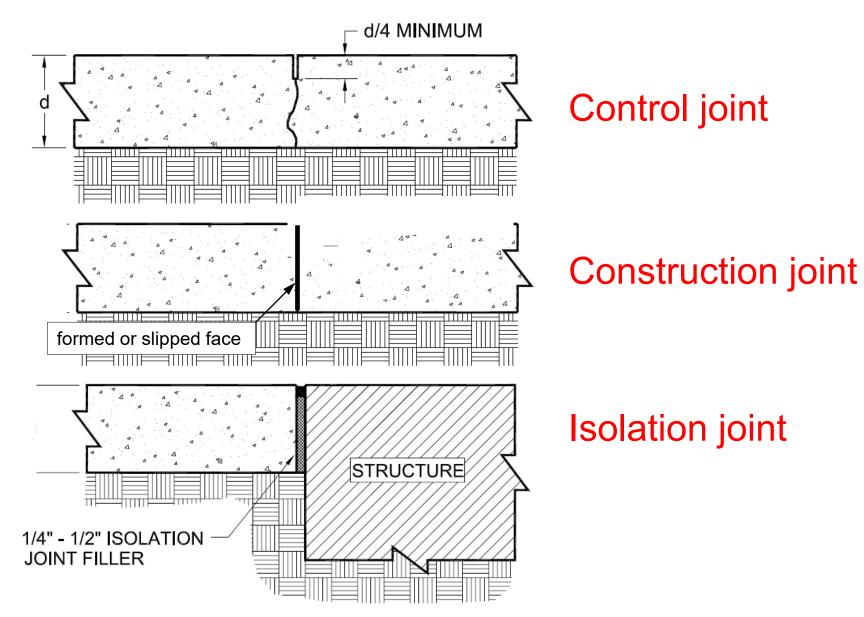
Steel & Macro Fibers (0.008-0.03") Secondary Reinforcement

Micro Fibers (<0.004") Plastic Shrinkage Crack Control

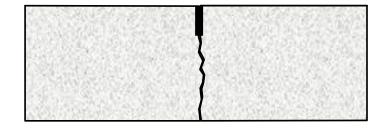
Objectives of Jointing

- Control the location, width, and appearance of expected cracks
- Facilitate construction
- Accommodate normal slab movements
- Provide load transfer where needed
- Minimize performance implications of any random (unexpected) cracks

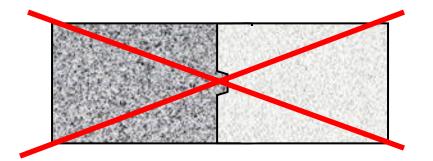
Recommended Spacing of Control Joints



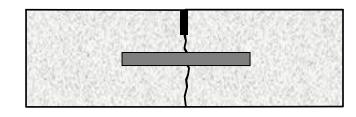
24-30 times the thickness


<u> Thickness (inches)</u>	Spacing (feet)
4	8-10
5	10-12
6	12-15 14-15
7	14-15
8+	15

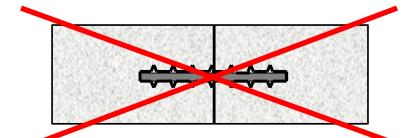
Some designs may call for closer joint spacing due to load transfer considerations.


Types of joints in concrete pavement

Load Transfer Joint Details: Pavements <7"



Aggregate Interlock


Load Transfer Joint Details: Pavements >7"

Round Dowels

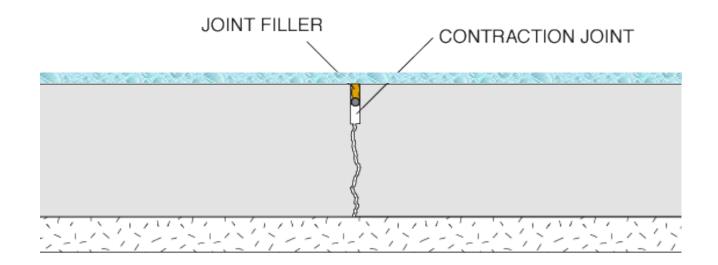


Plate Dowels

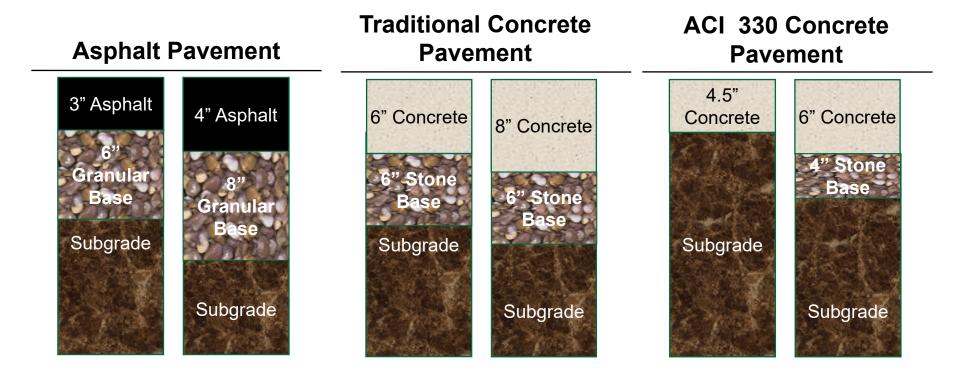
Tiebars ≠ Dowels! (not used for load transfer)

Purpose is to prevent infiltration of water and solids into joint

Most effective to reduce joint width

1/4 of depthrecommended;1/3 of depthpreferred

Saving Money with ACI 330 Case Study Example



Lowe's Home Improvement

Lowe's Home Improvement - Wilmington, NC

Savings to the owner over traditional concrete design: Undisclosed (reported to be 6-figures!)

TO DO or NOT TO DO

- Don't copy and paste pavement design that have been used on other projects
 - Each project is unique
 - Ask your client about traffic type and design frequency for those hads
- Don't have a geotechnical Report...No Problem
 - USDA Website
 - Make a CONSEREVATIVE Assumption
- Don't have traffic data...No Problem.
 - ESTIMATE
 - You're probably right
 - You can always change it

Call, Text, E-Mail

Theron

It's not all concrete...ALL the time

DURABLE. SUSTAINABLE. CONCRETE.

Give Them a Choice...

Always Specify Concrete

It Spurs Competition!!!

- Concrete pavement has a place
- Concrete pavement is *durable*
- Concrete pavement can be cost effective
- Concrete pavement thickness design is *much easier than I thought an hour ago...*
- Concrete pavement questions...contact Theron Tobolski.

We're here to help...Questions?...Thank You

PAVEMENT ASSOCIATION

• 75 http://www.acpa.org/

URABLE. SUSTAINABLE. CONCRETE

Questions???

DURABLE, SUSTAINABLE, CONCRETE.

the commentation of the second