STEEL FIBER REINFORCED CONCRETE, A BETTER TECHNOLOGY

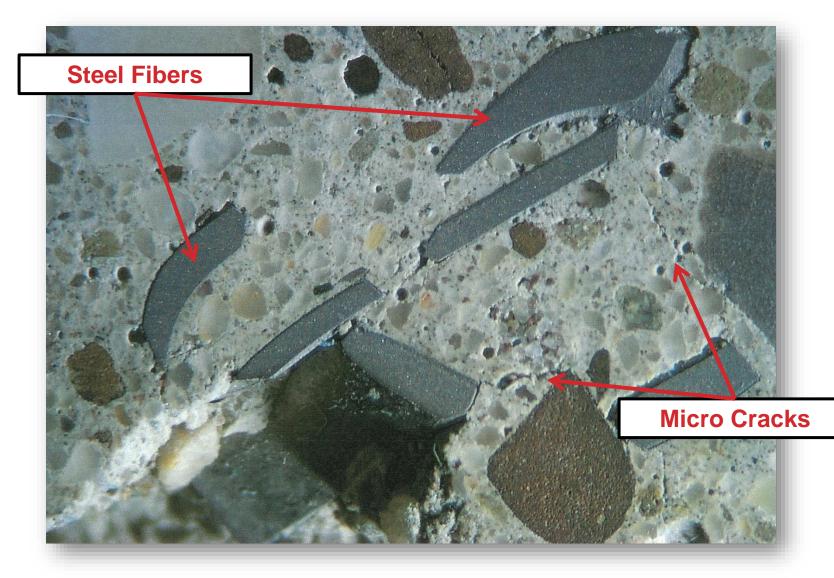
CONCRETE FIBER SOLUTIONS: WE PUT THE STEEL IN FIBER REINFORCEMENT

WHAT IS STEEL FIBER

- Specification: ASTM A820
- High Tensile Strength Low Carbon Steel
- Deformed For Maximum Bond
- Discontinuous Reinforcement
- Three Dimensional
- Ductile

APPLICATIONS

- Slab-on-Grade/Extended Joints
- Multi-Story Composite Deck
- Freezer/Refrigerated Slabs
- Exterior Pavement
- Food Processing



AFFECTS OF STEEL FIBER

- Increased Flexural Strength
- Fatigue
- Impact Resistance
- Ductility
- Arrests Microcracks
- Relieves Internal Strain

ARRESTING THE MICROCRACKS

DESIGN CONSIDERATIONS

- Subgrade reaction factor k
- Loading characteristics
- Determine slab thickness and concrete strength as if the slab were unreinforced
- Determine Steel Fiber dosage based on application: e.g. shrinkage crack control, extended joint, fatigue/impact
- Load Transfer and edge protection

MIXING, PLACING AND FINISHING

- Fibers on the Surface: Steel Fiber specific gravity 7.86
- Corrosion: Steel Fiber is discontinuous, paste coverage insolates fiber
- Distribution: 70 revolutions on high speed creates homogenous distribution
- No additional wear on mixing trucks, trowel machines
- Hard Trowel burnished finish
- Exterior brush finish

ADDING STEEL FIBER TO THE MIX

ADDING STEEL FIBER TO THE MIX

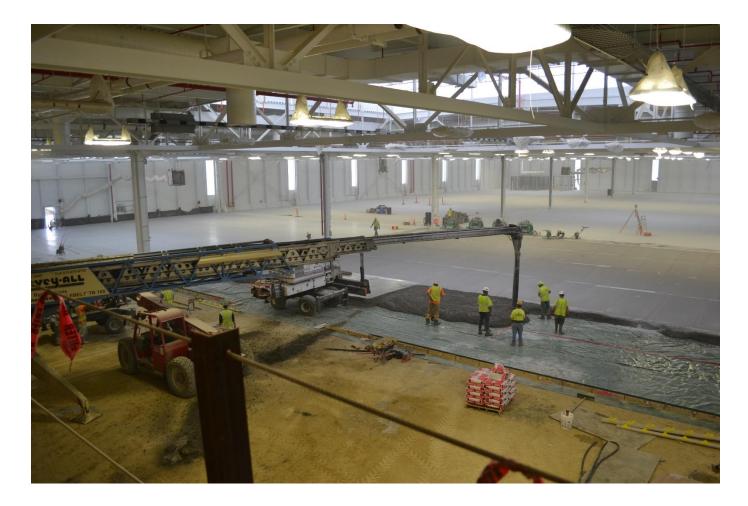
FINISHING

- Laser Screed: Provides sufficient surface vibration to consolidate Steel Fiber below surface
- Vibrate edges to consolidate
- Pans first for flatness, blades to harden surface
- SawCuts: Steel Fiber requires 1/3 of the slab/pavement depth; timing is important

FINISHING

ENTERPRISE WEST PROJECT WEST CHICAGO, IL

PROLOGIS PROJECT LOCKPORT, IL


CATERPILLAR PROJECT PEORIA, IL

WOODWARD PROJECT ROCKFORD, IL

CASE STUDY: REBAR VS. STEEL FIBER

Project: White Wave Foods plant expansion to add 141,000 sf. warehouse / distribution space

	Re	bar Design	(CFS Fiber
Rebar (160 tons)	\$	244,320	\$	0
Poly (10 mil)	\$	0	\$	12,320
Steel Fibers (60# / cy)	\$	0	\$	228,867
Prep pour	\$	7,000	\$	0
Pumping	\$	35,250	\$	0
Construct Joints	\$	3,800	\$	0
Dowel Baskets	\$	0	\$	20,240
Saw Cuts	\$	9,066	\$	2,229
Joint Filling	\$	54,396	\$	13, 371
TOTAL	\$	353,832	\$	277,026

Total Savings \$76,805

Installation Time			
<u>CFS</u>	VS	Rebar	
7 Days		14 Days	

Advantage CFS: Floor placed and finished at a lower cost, in less time than just setting the rebar for a traditional design